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1 Models

The primary model whose parameters we aim to estimate is:

Yij = δgij + αpgp(i) + αmgm(i) + εij. (1)

See Supplementary Note Table 1 for definitions of terms. Because offspring genotype varies
randomly around parental genotype due to Mendelian segregations during meiosis, δ captures
the causal effect of inheriting the allele being counted, along with partial capture of causal effects
of other alleles that are linkage disequilibrium with the allele being counted due to physical
linkage[1]. The paternal and maternal non-transmitted coefficients (NTCs), αp and αm, capture
indirect genetic effects from relatives, and the effects of other genetic and environmental factors
the allele is correlated with due to non-random mating (population structure and assortative
mating). The residual εij captures all other factors influencing the trait that are not correlated
with siblings’ or parents’ genotypes. We allow for this to be correlated between siblings in the
same family: Corr(εi1, εi2) = r.

term definition

gij genotype of sibling j in family i
gpij 0/1 genotype of paternally inherited allele of sibling j in family i
gmij 0/1 genotype of maternally inherited allele of sibling j in family i
gp(i) genotype of father in family i
gm(i) genotype of mother in family i
gpar(i) gpar(i) = gp(i) + gm(i)

f allele frequency: E[gij] = 2f
Yij phenotype of sibling j in family i
δ direct effect
ηs indirect genetic effect from sibling
αp paternal non-transmitted coefficient
αm maternal non-transmitted coefficient
α average non-transmitted coefficient: α = (αp + αm)/2
β population effect: β = δ + α
εij residual component of Yij that is uncorrelated with siblings’ and parents’ genotypes
r correlation of siblings’ residuals: r = Corr(εi1, εi2)
σ2
ε variance of siblings’ residuals

PGIij polygenic index of sibling j in family i
PGIp(i) polygenic index of the father in family i
PGIm(i) polygenic index of the mother in family i

PGIpar(i) PGIpar(i) = PGIp(i) + PGIm(i)

ram ram = Corr(PGIp(i),PGIm(i))

Supplementary Note Table 1: Table of terms.
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We also consider a model with indirect effects from siblings:

Yi1 = δgi1 + ηsgi2 + (αp − ηs/2)gp(i) + (αm − ηs/2)gm(i) + εi1; (2)

Yi2 = δgi2 + ηsgi1 + (αp − ηs/2)gp(i) + (αm − ηs/2)gm(i) + εi2.

Here ηs captures the indirect effect of the allele through the sibling, and partly captures indirect
effects of other alleles in linkage disequilibrium due to physical linkage. The coefficients on the
parental genotypes differ from those in (1) because each parental allele has a 50% chance of
being passed onto the sibling, so that αp and αm capture one half of the indirect effect from the
sibling (if present) in (1). Because both siblings’ genotypes vary randomly given the genotypes
of the mother and father, estimates of δ and ηs from fitting this model are unbiased[2].

It is useful to also consider models where we model only the sum of maternal and paternal
genotypes. This model can be derived from (1) through the identity:

αpgp(i) + αmgm(i) =

(
αp + αm

2

)
(gp(i) + gm(i)) +

(
αp − αm

2

)
(gp(i) − gm(i)). (3)

This allows us to write (1) as

Yij = δgij +

(
αp + αm

2

)
(gp(i) + gm(i)) +

(
αp − αm

2

)
(gp(i) − gm(i)) + εij. (4)

Notice that gp(i)−gm(i) is uncorrelated with gij and gp(i)+gm(i), so we can subsume the difference
term into the residual and write the model as

Yij = δgij + αgpar(i) + ε′ij, (5)

where α = (αp + αm)/2 is the average NTC, gpar(i) = gp(i) + gm(i) is the sum of maternal and
paternal genotypes, and ε′ij is uncorrelated with gij and gpar(i). Note that ε′ij in (5) is not
the same as εij in (1) if αp 6= αm. However, this distinction is practically unimportant when
(αp − αm)2 is small relative to the phenotypic variance. Because gij varies randomly around
gpar(i)/2, estimates of δ from fitting (5) are unbiased[3]. Similarly, we can fit a model with
indirect effects from siblings that only considers the sum of maternal and paternal genotypes:

Yi1 = δgi1 + ηsgi2 + (α− ηs/2)gpar(i) + εi1; (6)

Yi2 = δgi2 + ηsgi1 + (α− ηs/2)gpar(i) + εi2.

2 Imputation regression theory

In real data, genotypes of one or both parents are often missing. We consider imputing the
missing parental genotypes as the conditional expectation of the missing genotype(s) given the
observed genotypes. For example, if we have genotypes on two siblings, we can impute the sum
of maternal and paternal genotypes as ĝpar(i) = E[gpar(i)|gi1, gi2]. We first prove that regression
using imputation of this kind produces unbiased and consistent estimates of parameters along
with unbiased sampling error estimates before considering specific applications.
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Lemma 1. Consider two random column vectors X0 and X1 and a statistic A, which could be,
for example, the IBD state of two siblings at a SNP. Let X̂1 = E[X1|X0, A], then Cov(X1, X̂1) =
Var(X̂1) and Cov(X0, X̂1) = Cov(X0, X1).

Proof. First note that E[X̂1] = E[E[X1|X0, A]] = E[X1] by the Law of Iterated Expectations.
We now compute

Cov(X1, X̂1) = E[X1X̂
T
1 ]− E[X1]E[X̂1]T (7)

= E[E[X1X̂
T
1 |X0, A]]− E[X̂1]E[X̂1]T , (8)

by the Law of Iterated Expectations, and using the fact that E[X̂1] = E[X1]. Since conditional
on X0 and A, X̂1 is constant, we have that E[E[X1X̂

T
1 |X0, A]] = E[E[X1|X0, A]X̂T

1 ] = E[X̂1X̂
T
1 ],

and therefore
Cov(X1, X̂1) = E[X̂1X̂

T
1 ]− E[X̂1]E[X̂1]T = Var(X̂1). (9)

We use the Law of Total Covariance to compute Cov(X0, X1):

Cov(X0, X1) = E[Cov(X0, X1|X0, A)] + Cov(E[X0|X0, A],E[X1|X0, A]). (10)

Since X0 is a constant given X0, Cov(X0, X1|X0, A) = 0. Furthermore, E[X0|X0, A] = X0.
Therefore,

Cov(X0, X1) = Cov(X0, X̂1). (11)

2.1 Consistency of estimates

Theorem 2. Let X = [X0 X1]; X̂1 = E[X1|X0, A]; X̂ = [X0 X̂1]; and Y = Xθ+ ε, where ε⊥X.
Then θ̂ = (X̂T X̂)−1X̂TY is a consistent estimator of θ provided that Var(X̂) is invertible.

Proof. Provided that Var(X̂) is invertible,

lim
n→∞

θ̂ = Var(X̂)−1Cov(X̂, Y ). (12)

Using Lemma 1, we have that Cov(X̂, Y ) = Cov(X̂,Xθ) = Var(X̂)θ. Therefore,

lim
n→∞

θ̂ = Var(X̂)−1Var(X̂)θ = θ. (13)

Remark. This also shows we can combine different imputations in a single regression while
retaining a consistent estimator for θ. Consider the model as above except split into two
subsamples, a of na individuals, and b of nb individuals: Y = [Ya Yb]

T = [Xa Xb]
T θ + ε. We
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impute Xa as X̂a and Xb as X̂b, where Var(X̂a) 6= Var(X̂b), but where we have Cov(X̂a, Xa) =
Var(X̂a) and Cov(X̂b, Xb) = Var(X̂b) as above. Then we have that

θ̂ → (naVar(X̂a) + nbVar(X̂b))
−1(naCov(X̂a, Ya) + nbCov(X̂b, Yb)) (14)

= (naVar(X̂a) + nbVar(X̂b))
−1(naVar(X̂a)θ + nbVar(X̂b)θ) = θ, (15)

provided that the resulting combined variance-covariance matrix (naVar(X̂a) + nbVar(X̂b)) is
invertible. This is especially useful when Var(X̂a) or Var(X̂b) is not invertible since the impu-
tation in that sample is not of full rank, but the resulting combined regression is of full-rank.
See also Section 6 on multivariate meta-analysis.

Corollary 2.1. This implies that the generalised least-squares (GLS) estimator is also con-
sistent since Var(X̂) = Cov(X̂,X) implies that BVar(X̂)BT = BCov(X̂,X)BT , which implies
Var(BX̂) = Cov(BX̂,BX). Let Cov(ε) = Σ, then the GLS estimator of θ is

θ̂gls = (X̂TΣ−1X̂)−1X̂TΣ−1Y → Var(Σ−1/2X̂)−1Cov(Σ−1/2X̂,Σ−1/2X)θ = θ. (16)

2.2 Unbiasedness of estimates

We now prove that both the OLS and GLS estimators are unbiased.

Theorem 3. Let X = [X0 X1]; X̂1 = E[X1|X0, A]; X̂ = [X0 X̂1]; and Y = Xθ+ ε, where ε⊥X.
Then the GLS estimator θ̂gls = (X̂TΣ−1X̂)−1X̂TΣ−1Y is an unbiased estimator of θ provided

that (X̂TΣ−1X̂) is invertible.

E[θ̂gls] = E[(X̂TΣ−1X̂)−1X̂TΣ−1Y ]; (17)

= E[(X̂TΣ−1X̂)−1X̂TΣ−1X]θ; (18)

= E[E[(X̂TΣ−1X̂)−1X̂TΣ−1X|X0, A]]θ (19)

= E[(X̂TΣ−1X̂)−1X̂TΣ−1E[X|X0, A]]θ (20)

= E[(X̂TΣ−1X̂)−1X̂TΣ−1X̂]θ (21)

= θ. (22)

Note that this also applies to OLS by setting Σ−1 = I.

2.3 Unbiasedness of empirical sampling variance-covariance matrix

Here, we demonstrate that the empirical sampling variance-covariance matrix derived from OLS
gives an unbiased estimate of the true sampling variance-covariance matrix for OLS estimation
from a sample of n independent and identically distributed observations. As in Theorem 2, let
X = [X0 X1]; X̂1 = E[X1|X0, A]; X̂ = [X0 X̂1]; and Y = Xθ + ε = X0θ0 + X1θ1 + ε, where
ε⊥X, E[ε] = 0, Var(ε) = σ2In, and θ = [θ0, θ1]T is length p and X̂T X̂ is an invertible [p × p]
matrix.

7



Lemma 4. The variance of the OLS estimator, θ̂ = (X̂T X̂)−1X̂TY , is

Var(θ̂) =
(
σ2 + θT1 [Var(X1)− Var(X̂1)]θ1

)
(X̂T X̂)−1 (23)

Proof. We can express the phenotype vector Y as Y = X̂θ + (X − X̂)θ + ε, and therefore

θ̂ = (X̂T X̂)−1X̂T (X̂θ + (X − X̂)θ + ε) = θ + (X̂T X̂)−1X̂T [(X1 − X̂1)θ1 + ε]. (24)

From this, we compute

Var(θ̂) = (X̂T X̂)−1X̂TE[(X1 − X̂1)θ1θ
T
1 (X1 − X̂1)T ]X̂(X̂T X̂)−1 + σ2(X̂T X̂)−1, (25)

where we have used the fact that ε⊥X to remove the covariance terms. Since the samples are
independent and identically distributed,

E[(X1 − X̂1)θ1θ
T
1 (X1 − X̂1)T ] = θT1 [Var(X1)− Var(X̂1)]θ1In, (26)

where we have used the fact that Cov(X1, X̂1) = Var(X̂1) from Lemma 1 to compute the
variance of the diagonal elements. Therefore,

Var(θ̂) =
(
σ2 + θT1 [Var(X1)− Var(X̂1)]θ1

)
(X̂T X̂)−1. (27)

Theorem 5. Let ε̂ = Y − X̂θ̂ be the vector of fitted residuals from OLS regression. We define
the empirical sampling variance-covariance matrix to be:

V̂θ =
ε̂T ε̂

n− p
(X̂T X̂)−1. (28)

The empirical sampling variance-covariance matrix is an unbiased estimator of the true sampling
variance-covariance matrix of θ̂: E[V̂θ] = Var(θ̂).

Proof. We compute the expectation of the empirical sampling variance-covariance matrix:

E[V̂θ] =
E[ε̂T ε̂]

n− p
(X̂T X̂)−1. (29)

To compute E[ε̂T ε̂] we define the ‘hat-matrix’,

H = X̂(X̂T X̂)−1X̂T . (30)

We can express the residual vector in terms of the hat-matrix:

ε̂ = (In −H)(X1 − X̂1)θ1 + (In −H)ε. (31)
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Therefore,

ε̂T ε̂ =θT1 (X1 − X̂1)T (In −H)(X1 − X̂1)θ1 + εT (In −H)ε+ (32)

θT1 (X1 − X̂1)T (In −H)εT + εT (In −H)(X1 − X̂1)θ1, (33)

where we have used the fact that (In−H) is a projection matrix, so (In−H)(In−H)T = (In−H).
We now use the trace operator to express the first two terms differently:

θT1 (X1 − X̂1)T (In −H)(X1 − X̂1)θ1 = tr
(

(In −H)(X1 − X̂1)θ1θ
T
1 (X1 − X̂1)T

)
; (34)

εT (In −H)ε = tr
(
(In −H)εεT

)
. (35)

Taking the expectation of ε̂T ε̂, the cross-product terms vanish, giving:

E[ε̂T ε̂] = tr
(

(In −H)E[(X1 − X̂1)θ1θ
T
1 (X1 − X̂1)T ]

)
+ tr

(
(In −H)E[εεT ]

)
. (36)

Here, we have used the fact that E[tr(AX)] = tr(AE[X]) when A is a constant matrix. Since
E[εεT ] = σ2In, and using Equation 26, we obtain

E[ε̂T ε̂] = (θT1 [Var(X1)− Var(X̂1)]θ1 + σ2)tr(In −H). (37)

All that remains is to compute the trace:

tr(In −H) = tr(In)− tr(X̂(X̂T X̂)−1X̂T ) = n− tr(Ip) = n− p. (38)

Therefore,

E[V̂θ] =
(
σ2 + θT1 [Var(X1)− Var(X̂1)]θ1

)
(X̂T X̂)−1 = Var(θ̂). (39)

3 Imputation from siblings

Here we outline how to impute parental genotype from siblings without using IBD data, using
phased data and IBD, and using un-phased data and IBD. We give the imputed parental
genotypes as a function of the genotypes of a sibling pair and, if applicable, the IBD state of
the siblings; and we compute the variance of the resulting imputed parental genotypes, which
is used in the next section to compute the sampling variance of the estimates.
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3.1 Imputation without IBD

For a family of two siblings, the simplest form of imputation imputes the sum of the parents’
genotypes as ĝpar(i) = E[gpar(i)|gi1, gi2]. The values are[4] :

gi2
0 1 2

0 2f/(2− f) 2/(2− f) 2
gi1 1 2/(2− f) 2 + (2f − 1)/(1 + f(1− f)) 2(1 + 2f)/(1 + f)

2 2 2(1 + 2f)/(1 + f) 2(1 + 3f)/(1 + f)

Supplementary Note Table 2: E[gpar(i)|gi1, gi2].

3.1.1 Variance of imputed parental genotype

To compute the variance of the estimator, we need to compute the variance of the imputed
parental genotype:

Var(ĝpar(i)) =
∑
gi1,gi2

(ĝpar(i) − 4f)2P(gi1, gi2) (40)

The joint distribution of sibling genotypes can be derived by conditioning on the parental
genotypes:

P(gi1, gi2) =
∑

gm(i),gp(i)

P(gi1, gi2|gm(i), gp(i))P(gm(i), gp(i)). (41)

Since sibling genotypes are determined by independent random segregations in the parents,
they are conditionally independent given parental genotype. Therefore,

P(gi1, gi2) =
∑

gm(i),gp(i)

P(gi1|gm(i), gp(i))P(gi2|gm(i), gp(i))P(gm(i), gp(i)). (42)

Under assumptions of random mating, the parental genotypes are independent. Therefore,

P(gi1, gi2) =
∑

gm(i),gp(i)

P(gi1|gm(i), gp(i))P(gi2|gm(i), gp(i))P(gm(i))P(gp(i)). (43)

The above probabilities can be computed (laboriously) by application of Mendelian laws of
inheritance and using parental genotype frequencies at Hardy-Weinberg equilibrium.

gi2
0 1 2

0 (1− f)2(1− f/2)2 f(1− f)2(1− f/2) f 2(1− f)2/4
gi1 1 f(1− f)2(1− f/2) f(1− f)[1 + f(1− f)] f 2(1− f)(1 + f)/2

2 f 2(1− f)2/4 f 2(1− f)(1 + f)/2 f 2(1 + f)2/4

Supplementary Note Table 3: The joint distribution for two siblings’ genotypes: P(gi1, gi2).
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The variance of the imputed parental genotypes can be computed from the above joint
distribution of sibling genotypes and the corresponding values of the above imputed parental
genotypes. We do not give an expression here due to its complexity.

3.1.2 Handling IBD errors

We use a generalisation of the above approach to impute the missing parental genotypes when
we observe an impossible genotype-IBD state. We make the assumption that if the observed
genotypes are impossible given the IBD state, that the IBD state is in error, since errors in
IBD inference are typically far more common than errors in genotypes. We therefore impute
ignoring the IBD information (Appendix C).

3.2 Imputation with IBD

Let gpar(i) = gm(i) + gp(i) be the sum of the parental genotypes for individual i. This can also
be written in terms of the parental alleles: gpar(i) = gpm(i) + gmm(i) + gpp(i) + gmp(i), where gpm(i) is the
paternally inherited allele of the mother of i, and gmp(i) is the maternally inherited allele of the
father of i. For now, we assume that we know which alleles are shared IBD in addition to the
overall IBD state (0, 1, or 2), which, for IBD state 1, requires phased data when both siblings are
heterozygous. We construct the estimate of gpar(i), ĝpar(i), to be the expectation of gpar(i) given
the observed sibling genotypes and the IBD state of the siblings: ĝpar(i) = E[gpar(i)|gi1, gi2, IBD].
This gives:

ĝpar(i) =


gi1 + gi2 = gpar(i), if IBD = 0

gi1 + gki2 + f, if IBD = 1

gi1 + 2f, if IBD = 2,

(44)

where k ∈ {m, p} is such that gki2 is not IBD with the alleles inherited by sibling 1 in family i.
If we do not have access to phased data, then if both siblings are heterozygous and the IBD

state is 1, then the shared allele cannot be determined. In this case, the shared allele is the
allele with frequency f with probability 1− f , and the shared allele is the allele with frequency
1− f with probability f . This can be derived from considering the relative frequencies of the
three observed parental genotypes: when the allele with frequency f is shared, the probability
of observing those three parental alleles is f(1−f)2; and when the allele with frequency (1−f)
is observed, the probability of observing those three parental alleles is f 2(1 − f). Conditional
on both siblings being heterozygous and being in IBD state 1, the probability that the allele
with frequency f is shared is f(1−f)2/[f(1−f)2 +f 2(1−f)] = f(1−f)2/f(1−f) = 1−f ; this
implies that the probability that the allele with frequency 1 − f is shared is f . The imputed
parental genotype is therefore the average over these two possibilities:

E[gpar(i)|gi1 = 1, gi2 = 1, IBD = 1] = f(2 + f) + (1− f)(1 + f) = 1 + 2f. (45)
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Let Hi be the event that both siblings are heterozygous, then the imputed parental genotype
without phased data is:

ĝpar(i) =


gi1 + gi2 = gpar(i), if IBD = 0

gi1 + gki2 + f, if IBD = 1 and ¬Hi

1 + 2f, if IBD = 1 and Hi

gi1 + 2f, if IBD = 2,

(46)

3.2.1 Multiple siblings

First we prove that, for three or more siblings, it is impossible for all pairs of siblings to be in
an IBD1 state.

Consider three siblings in family i. We write the genotype of a sibling in terms of parental
alleles as (gjm(i), g

k
p(i)) for j, k ∈ {m, p}. Without loss of generality, consider that the genotype

of sibling 1 is (gpm(i), g
p
p(i)) and that the genotype of sibling 2 is (gpm(i), g

m
p(i)), so that sibling 1

and 2 are in IBD1. We now consider if it is possible for a third sibling to be IBD1 with both
sibling 1 and sibling 2.

If sibling 3 inherits the same parental alleles as either sibling 1 or sibling 2, then sibling
3 is IBD2 with another sibling. There are two more possible inheritance patterns for sibling
3: (gmm(i), g

p
p(i)), which implies sibling 3 is IBD0 with sibling 2; and (gmm(i), g

m
p(i)), which implies

sibling 3 is IBD0 with sibling 1. Therefore, it is impossible for sibling 3 to be IBD1 with both
sibling 1 and sibling 2.

This implies that, to impute parental genotypes with more than two siblings, the problem
can be reduced to imputing exactly the parental alleles when at least one sibling pair is in
an IBD0 state; or imputing as if one has observed a single sibling pair in an IBD2 state if all
siblings are in an IBD2 state with each; or reduced to the problem of imputing from a sibling
pair in IBD state 1 by reducing sets of siblings that are all IBD 2 with each other to a single
sibling. (An additional sibling that is in an IBD2 state with an existing sibling adds no further
observed parental alleles.)

3.2.2 Variance of imputed parental genotype

We compute the variance of the parental genotype imputed from a sibling pair. The variance
of the imputed parental genotype can be computed by the Law of Total Variance:

Var(ĝpar(i)) = EIBD[Var(ĝpar(i)|IBD)] + VarIBD(E[ĝpar(i)|IBD]) = EIBD[Var(ĝpar(i)|IBD)], (47)

since the expectation of the imputed parental genotypes does not depend upon the IBD state
of the siblings. When using phased data for imputation, the variance of the imputed parental

12



genotype is directly proportional to the number of observed parental alleles:

Var(ĝpar(i)|IBD) =


4f(1− f), if IBD = 0

3f(1− f), if IBD = 1

2f(1− f), if IBD = 2

. (48)

Therefore, since P(IBD = 0) = 0.25, P(IBD = 1) = 0.5, and P(IBD = 2) = 0.25, Var(ĝpar(i)) =
3f(1− f) = (3/4)Var(gpar(i)). The imputed parental genotype thus captures three quarters of
the variance of the observed parental genotype.

Without phased data, the variation in the parental genotype captured by the imputation is
decreased due to the inability to determine the shared allele when both siblings are heterozygous
and in IBD state 1. To compute the variance of the imputed parental genotype, we need to
compute the variance of the imputed parental genotype given IBD state 1. The imputed
parental genotype as a function of the observed sibling genotypes given IBD state 1 is:

gi2
0 1 2

0 f 1 + f -
gi1 1 1 + f 1 + 2f 2+f

2 - 2 + f 3 + f

Supplementary Note Table 4: E[gpar(i)|gi1, gi2, IBD = 1]

By considering the probability of observing the three observed parental alleles, one can
derive the distribution of the observed sibling genotypes given that the IBD state is 1:

gi2
0 1 2

0 (1− f)3 f(1− f)2 0
gi1 1 f(1− f)2 f(1− f) f 2(1− f)

2 0 f 2(1− f) f 3.

Supplementary Note Table 5: P(gi1, gi2|IBD = 1)

From these two tables, one can compute that

Var(ĝpar(i)|IBD = 1) = [3− f(1− f)]f(1− f); (49)

and therefore
Var(ĝpar(i)) = [3− f(1− f)/2]f(1− f). (50)
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This shows that the fraction of the variance in the parental genotype captured by imputation
without phased data is:

Var(ĝpar(i))

Var(gpar(i))
=

3− f(1− f)/2

4
, (51)

which decreases with increasing heterozygosity.

4 Estimating effects from siblings

For the analyses in this section, we first assume that ηs = 0. We then relax the assumption
that ηs = 0 and we consider also the case where sibling pairs are asymmetrical, which may be
the case when they differ in sex or age etc.

The model for the two siblings’ phenotypes is:

Yi1 = δgi1 + αgpar(i) + εi1; (52)

Yi2 = δgi2 + αgpar(i) + εi2; (53)

where α = (αp + αm)/2 is the average non-transmitted coefficient, and the residuals εi1 and εi2
are uncorrelated with the parent and offspring genotypes and have Var(εi1) = Var(εi2) = σ2

ε ,
and Corr(εi2, εi2) = r.

4.1 Without imputation

The phenotypes of the two siblings can be transformed into two orthogonal variables:

Yi1 − Yi2 = δ(gi1 − gi2) + εi1 − εi2; (54)

Yi1 + Yi2 = δ(gi1 + gi2) + 2αgpar(i) + εi1 + εi2. (55)

The first variable, Yi1 − Yi2, gives information on δ. The second variable gives information
on a linear combination of δ and α that, when combined with the information on δ from the
difference in phenotypes, can give an estimate of α.

By performing regression of differences between siblings’ phenotypes onto differences in
genotypes, one can estimate δ. Let δ̂∆ be the resulting estimator. It can be shown that
E[δ̂∆] = δ when ηs = 0; and

Var(δ̂∆) =
(1− r)σ2

ε

nf(1− f)
. (56)

By regression of (Yi1 + Yi2) on (gi1 + gi2) one obtains an estimate of δ + (4/3)α. Let
this estimate be â. It is trivial to show that Var(â) = (1 + r)σ2

ε/(3nf(1 − f)). We can
obtain an estimate of α as α̂∆ = (3/4)(â − δ̂∆), with E[α̂∆] = α. From this, we have that
Var(α̂∆) = 3σ2

ε (2− r)/(8nf(1− f)). We also have that Cov(α̂∆, δ̂∆) = −3Var(δ̂∆)/4 = −3(1−
r)σ2

ε/(4nf(1− f)).
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4.2 With imputation

Given that ηs = 0, the results of Section 2 imply that least-squares and generalised least-squares
regression of phenotype onto proband and imputed parental genotype gives an unbiased and
consistent estimator of (δ, α)T .

Let ĝpar(i) be the imputed parental genotype from one of the above methods — without
IBD, with phased data and IBD, and with IBD but without phased data. From Lemma 1, we
have that Var(gi1) Cov(gi1, gi2) Cov(gi1, ĝpar(i))

Cov(gi1, gi2) Var(gi2) Cov(gi2, ĝpar(i))
Cov(gi1, ĝpar(i)) Cov(gi2, ĝpar(i)) Var(ĝpar(i))

 = f(1− f)

2 1 2
1 2 2
2 2 4v

 , (57)

where v is the fraction of the variance in parental genotype captured by the imputation.
We compute the sampling variance of from n independent families with two siblings in each

family, where

X̂i =

[
gi1 ĝpar(i)

gi2 ĝpar(i)

]
(58)

is the design matrix for family i, with gi1 the genotype of sibling 1 in family i, gi2 the genotype
of sibling 2 in family i, and ĝpar(i) the imputed parental genotype for family i. For convenience
in this computation, we assume that the genotypes have been mean-centred.

The generalised least-squares estimator is:

θ̂ =

(
n∑
i=1

X̂T
i Σ−1

i X̂i

)−1( n∑
i=1

X̂T
i Σ−1

i Yi

)
. (59)

Assuming that α2 is negligible compared to the phenotypic variance (Section 2),

Var(θ̂) ≈

(
n∑
i=1

X̂T
i Σ−1

i X̂i

)−1

. (60)

We have that:

XT
i Σ−1

i Xi =
1

σ2
ε (1− r2)

[
gi1 gi2
ĝpar(i) ĝpar(i)

] [
1 −r
−r 1

] [
gi1 ĝpar(i)

gi2 ĝpar(i)

]
(61)

=
1

σ2
ε (1− r2)

[
g2
i1 − 2rgi1gi2 + g2

i2 ĝpar(i)(gi1 − r(gi1 + gi2) + gi2)
ĝpar(i)(gi1 − r(gi1 + gi2) + gi2) 2(1− r)ĝ2

par(i)

]
(62)

As the sample size increases,

n∑
i=1

X̂T
i Σ−1

i X̂i →
2nf(1− f)

σ2
ε (1− r2)

[
2− r 2(1− r)

2(1− r) 4v(1− r)

]
. (63)
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Therefore,(
n∑
i=1

X̂T
i Σ−1

i X̂i

)−1

→ σ2
ε (1 + r)

8[(2− r)v + r − 1]nf(1− f)

[
4v(1− r) −2(1− r)
−2(1− r) (2− r)

]
. (64)

Using the above, we can derive the approximate large-sample variance of the generalised
least squares estimator using different imputation methods:

method v Var(δ̂)1 Var(α̂)1

no imputation - (1− r) (3/8)(2− r)

IBD and unphased 3/4− f(1− f)/8 (1−r2)(3−f(1−f)/2)
2[2+r−(1−r/2)f(1−f)]

(1+r)(2−r)
2[2+r−(1−r/2)f(1−f)]

IBD and phased 3/4 3(1−r2)
2(2+r)

(1+r)(2−r)
2(2+r)

complete data 1 1−r2
2

(1+r)(2−r)
8

Supplementary Note Table 6: The sampling variance of estimators of the direct effect and av-
erage non-transmitted coefficient using no imputation, imputation using IBD and un-phased
data, using phased data and IBD, and using complete data (both maternal and paternal geno-
type observed). These are given for a sample of n independent sibling pairs with a correlation
of r between their residuals. 1The sampling variance is given as the factor that multiplies
σ2
ε/(nf(1− f)).

4.3 Asymmetrical sibling pairs

Here we relax the assumption that ηs = 0 and allow for effects to differ between two types of
siblings (such as older or younger, or male or female):

Yi1 = δ1gi1 + ηs1gi2 + α1gpar(i) + εi1, (65)

Yi2 = δ2gi2 + ηs2gi1 + α2gpar(i) + εi2. (66)

The model can be transformed into two approximately uncorrelated variables:

Y+i = (δ1 + ηs2)gi1 + (δ2 + ηs1)gi2 + (α1 + α2)gpar(i) + εi1 + εi2, (67)

Y−i = (δ1 − ηs2)gi1 − (δ2 − ηs1)gi2 + (α1 − α2)gpar(i) + εi2 − εi2. (68)

As long as the genotypes at the SNP account for only a small fraction of the variance of the
phenotypic variance, and provided that Var(εi1) ≈ Var(εi2), we have that Cov(Y+i, Y−i) ≈ 0.
Let us assume that Var(εi1) = Var(εi2) = σ2

ε , and therefore Var(εi1 + εi2) = 2(1 + r)σ2
ε and

Var(εi1 − εi) = 2(1− r)σ2
ε . Further, let θ1 = [δ1, ηs1, α1]T and θ2 = [ηs2, δ2, α2]T , and let

X̂i =

[
gi1 gi2 ĝpar(i)

gi2 gi1 ĝpar(i)

]
, (69)
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where ĝpar(i) has been imputed from the siblings’ genotypes and phased data. By the results

in Section 2, we have that the regression Y+i ∼ X̂i gives an unbiased and consistent estimator
of θ+ = θ1 + θ2; and the regression Y−i ∼ X̂i gives an unbiased and consistent estimator
of θ− = θ1 − θ2. We now compute the variance of the estimator from n independent families.
Assuming that the variance explained by the SNP is a small fraction of the phenotypic variance:

Var(θ̂+) ≈ 2(1 + r)σ2
ε

n
Var(X̂i)

−1; Var(θ̂−) ≈ 2(1− r)σ2
ε

n
Var(X̂i)

−1. (70)

From the above results, we have that

Var(X̂i) = f(1− f)

2 1 2
1 2 2
2 2 3

 . (71)

Therefore,

Var(X̂i)
−1 =

1

f(1− f)

 2 1 −2
1 2 −2
−2 −2 3

 . (72)

By combining the results of these two approximately uncorrelated regressions, and then through
linear transformation, we can estimate average and difference parameters for the effects on the
two sibling types. We have that

θ =


δ = (δ1 + δ2)/2
ηs = (ηs1 + ηs2)/2
α = (α1 + α2)/2
δ− = δ1 − δ2

ηs− = ηs1 − ηs2
α− = α1 − α2

 = A

[
θ−
θ+

]
, (73)

where

A =


1/4 −1/4 0 1/4 1/4 0
−1/4 1/4 0 1/4 1/4 0
−1/8 1/8 0 1/8 1/8 1/2
1/2 1/2 0 1/2 −1/2 0
1/2 1/2 0 −1/2 1/2 0
1/4 1/4 1 −1/4 1/4 0

 =

[
A11 A12

A21 A22

]
, (74)

where Aij are all [3× 3] matrices. We then have that δ̂η̂s
α̂

 = A11θ̂− + A12θ̂+ (75)
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Based on the fact that θ̂− and θ̂+ are approximately uncorrelated with variances given above,
it can be shown that

Var

 δ̂η̂s
α̂

 ≈ σ2
ε

2nf(1− f)

 2 + r 1 + 2r −(3/2 + r)
1 + 2r 2 + r −(1 + 3r/2)

−(3/2 + r) −(1 + 3r/2) 3/2 + 5r/4

 . (76)

If we condition on ηs = 0, then the estimate (δ, α) is[
δ̂ηs=0

α̂ηs=0

]
=

[
δ̂
α̂

]
+

[
−(1+2r)

2+r
1+3r/2

2+r

]
η̂s, (77)

with variance

Var

([
δ̂
α̂

])
≈ σ2

ε (1 + r)

2(2 + r)nf(1− f)

[
3(1− r) −2(1− r)
−2(1− r) (2− r)

]
, (78)

as derived in Equation 64 with v = 3/4 for the generalised least-squares estimator assuming
that ηs = 0. The effective sample size for estimation of δ is (2 + r)2/((3(1− r2)) times higher
when assuming ηs = 0 compared to also estimating ηs; i.e., at least 4/3 times higher for r ≥ 0.
This shows that if ηs 6= 0, assuming that ηs = 0 gives a more precise estimator of direct and
average parental effects at the cost of some bias. We note, however, that the bias is less than
when not performing imputation. Without performing imputation, the estimate of the direct
effect has bias −ηs, which is larger than with imputation, −(1+2r)

2+r
ηs, being only −ηs/2 when

r = 0, for example.
Similarly, the variance of the estimates of the difference parameters, which are uncorrelated

with the estimates of the average parameters, can be shown to be

Var

 δ̂−η̂s−
α̂−

 ≈ σ2
ε

2nf(1− f)

 8− 4r 4− 8r −6 + 4r
4− 8r 8− 4r −4 + 6r
−6 + 4r −4 + 6r 6− 5r

 . (79)

5 One parent missing

5.1 Imputation without phased data

We impute the missing parental genotype as the expectation given the observed proband and
parent genotypes. Assuming that the father’s genotype is missing, this is

ĝp(i) = E[gp(i)|gi, gm(i)] (80)

=
2[f(1− f)P(gi|gm(i), gp(i) = 1) + f 2P(gi|gm(i), gp(i) = 2)]

(1− f)2P(gi|gm(i), gp(i) = 0) + 2f(1− f)P(gi|gm(i), gp(i) = 1) + f 2P(gi|gm(i), gp(i) = 2)
,

(81)
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which is derived from application of Bayes’ Rule.
By applying the Laws of Mendelian Inheritance to compute the above probabilities, one can

derive that:

gm(i)

0 1 2
0 f f -

gi 1 1 + f 2f f
2 - 1 + f 1 + f

Supplementary Note Table 7: E[gp(i)|gi, gm(i)]

Note that it is impossible for a parent to have two copies of an allele and for the offspring
to inherit zero copies, without mutation. (We ignore the possibility of genotyping error here.)

5.1.1 Multiple siblings

We generalise the above approach to perform imputation when two or more full sibling offspring
of the observed parent are genotyped. As outlined above for imputation from siblings without
genotyped parents, imputation from three or more siblings can be reduced to imputation from
a single sibling pair in either IBD state 0, 1, or 2. We therefore give the values for the imputed
genotype of the missing father given observed maternal genotype, gm(i), and observations on
two sibling genotype (gi1, gi2), and the IBD state of the siblings.

We apply Bayes’ Rule to derive the probability of the paternal genotype given the observed
genotypes and IBD state of the sibling pair:

P(gp(i)|gi1, gi2, gm(i), IBD = t) =
P(gi1, gi2|gp(i), gm(i), IBD = t)P(gp(i)|gm(i), IBD = t)

P(gi1, gi2|gm(i), IBD = t)
(82)

=
P(gi1, gi2|gm(i), gp(i), IBD = t)P(gp(i))∑

gp(i)∈{0,1,2} P(gi1, gi2|gm(i), gp(i), IBD = t)P(gp(i))
(83)

From this, we can derive the expectation of the paternal genotype given the observed genotypes
and IBD state of the siblings. We give tables for these values in Appendix B.

5.2 Imputation with phased data

As outlined in 3.2.1, when multiple siblings are present, the imputation problem can be reduced
to a single sibling pair either in IBD0, IBD1, or IBD2. When a single offspring is present, this
is equivalent to a sibling pair in IBD2.

There are therefore three cases:

1. We have siblings in IBD0: the imputed parental genotype is the sum of the siblings’
genotypes minus the observed parent’s genotype;
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2. We have a sibling pair in IBD1 and no pairs in IBD0: in this case, one allele is shared
between the two siblings in IBD1. We first find that allele using the phased haplotype
surrounding the SNP. If that allele is shared between the sibling pair and the observed
parent, the missing parent’s genotype is exactly the sum of the alleles unshared between
the sibling pair. If that allele is not shared between the sibling pair and the observed
parent, the imputed genotype is the sum of the shared allele and the allele frequency;

3. All siblings are in IBD2: in this case, all the siblings have the same genotype. We
determine which allele in the siblings is shared with the observed parent, using the phased
haplotype if both sibling and observed parent genotype are heterozygous. The imputed
genotype is the sum of the allele in the siblings not shared with the observed parent and
the allele frequency.

When a pair of individuals is IBD1 and both are heterozygous at a SNP, we determine
which allele is shared by determining which phased haplotype in that region is shared. We use
a window of 100 SNPs around the target SNP, and we determine that a haplotype is shared if
there is perfect agreement between haplotypes in that window.

5.3 Association analysis

Consider a sample of n independent families with one parent and one child genotyped. We
assume the genotyped parent is the mother for all families for notational convenience.

The phenotype of the proband from family i can be expressed as

Yi = δgi + αpgp(i) + αmgm(i) + εi, (84)

for some mean-zero εi such that Cov(gi, εi) = Cov(gp(i), εi) = Cov(gm(i), εi) = 0, and Var(εi) = σ2
ε

for all i.
Let [X̂p]i = [g , gm(i) , ĝp(i)], where [X̂p]i is the ith row of X̂p, and let [Y ]i = Yi be the ith

element of the phenotype column vector Y . We consider an estimator formed by regression of
Y onto X̂p: θ̂p = (X̂T

p X̂)−1X̂T
p Y . The imputed parental genotype is the conditional expectation

given the proband and maternal genotype: ĝp(i) = E[gp(i)|gi, gm(i)]. This means we can apply

the theory in Section 2 to derive that E[θ̂p] = [δ, αp, αm]T and limn→∞ θ̂p = [δ, αp, αm]T .

We now derive the sampling variance of θ̂p. From Section 2.3, we have that

Var(θ̂p) = [σ2
ε + (Var(gp(i))− Var(ĝp(i)))α

2
p](X̂

T
p X̂p)

−1 (85)

As n→∞,

Var(θ̂p)→
σ2
ε + (Var(gp(i))− Var(ĝp(i)))α

2
p

n
Var(X̂p)

−1 =
σ2
ε

n
Var(X̂p)

−1 + O(α2
p). (86)

For typical analysis of individual SNPs, the O(α2
p) term is negligible and can be ignored.
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We first derive the variance of the estimator when imputing with phased data. Since we
always recover one of the missing father’s alleles, we have that Var(ĝp(i)) = f(1 − f), and
therefore, by Lemma 1,

Var(X̂p) = f(1− f)

2 1 1
1 2 0
1 0 1

 ;⇒ Var(θ̂p)→
σ2
ε + f(1− f)α2

p

nf(1− f)

 2 −1 −2
−1 1 1
−2 1 3

 . (87)

This shows that the variance for the estimator of direct effects is twice that of the estimator
with complete observations of genotypes (plus an O(α2

p) term).
To derive Var(ĝp(i)) when imputing without phased data, we first derive the joint probabil-

ities of the observed genotypes using Bayes’ Rule and the Laws of Mendelian Inheritance:

gm(i)

0 1 2
0 (1− f)3 f(1− f)2 0

gi 1 f(1− f)2 f(1− f) f 2(1− f)
2 0 f 2(1− f) f 3

Supplementary Note Table 8: P(gi, gm(i))

From this, we can compute that Var(ĝp(i)) = f(1 − f)[1 − f(1 − f)]. By application of
Lemma 1, we have that

Var(X̂p) = f(1− f)

2 1 1
1 2 0
1 0 1− f(1− f)

 ; (88)

and therefore

Var(θ̂p)→
σ2
ε + f(1− f)[1 + f(1− f)]α2

p

nf(1− f)[1− 3f(1− f)]

 2− 2f(1− f) −(1− f(1− f)) −2
−(1− f(1− f)) 1− 2f(1− f) 1

−2 1 3

 . (89)

Let δ̂p be the resulting estimator of δ, then

Var(δ̂p)→
[2− 2f(1− f)]σ2

ε

[1− 3f(1− f)]nf(1− f)
+ O(α2

p) (90)

This can be compared to the variance of the estimator of delta with both parental genotypes
observed, δ̂po: Var(δ̂po) = σ2

ε (nf(1− f))−1; and

Var(δ̂po)

Var(δ̂p)
=

1− 3f(1− f)

2− 2f(1− f)
+ O(α2

p). (91)
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Without phased data, the penalty relative to using fully observed parental genotypes increases
with the heterozygosity due to the fact that when both observed parent and child genotypes are
heterozygous, the allele inherited by the child from the observed parent cannot be determined,
so an average over the two possible inheritance patterns is taken as the imputation.

6 Multivariate Meta-analysis

Consider a parameter vector θ and independent observations zi ∼ N (Aiθ,Σi) for i = 1, . . . , k,
then it can be shown that the MLE for θ is

θ̂ =

(
k∑
i=1

ATi Σ−1
i Ai

)−1( k∑
i=1

ATi Σ−1
i zi

)
, (92)

with E[θ̂] = θ and

Var(θ̂) =

(
k∑
i=1

ATi Σ−1
i Ai

)−1

. (93)

Note that this assumes that
∑k

i=1A
T
i Σ−1

i Ai is invertible.
Consider estimating parameters in the model

Yi = δgi + αpgp(i) + αmgm(i) + εi, (94)

where εi is uncorrelated with gi, gp(i), and gm(i). We assume that indirect effects from siblings
are zero, ηs = 0. We consider estimating θ = [δ, αp, αm]T using different samples with different
observations of sibling and parental alleles.

We analyse theoretically a simple scenario where we combine results from a trio GWAS that
regresses phenotype onto proband genotype and the sum of maternal and paternal genotypes,
giving estimates of direct and average non-transmitted coefficients. Let θ = [δ, α]T and let n0

be the number of independent individuals with both parents genotyped used in the trio GWAS,
and let n1 be the number of independent individuals used in the standard GWAS. Then we
have that

z0 ∼ N

(
θ,

σ2
ε

n02f(1− f)

[
1 1
1 2

]−1
)

; (95)

and

z1 ∼ N

([
1
1

]T
θ,

σ2
ε

n12f(1− f)

)
. (96)
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We therefore have that

Var(θ̂) =

(
n02f(1− f)

σ2
ε

[
1 1
1 2

]
+
n12f(1− f)

σ2
ε

[
1 1
1 1

])−1

(97)

=
σ2
ε

2f(1− f)

[
n0 + n1 n0 + n1

n0 + n1 2n0 + n1

]−1

(98)

=
σ2
ε

2f(1− f)

1

n0(n0 + n1)

[
2n0 + n1 −(n0 + n1)
−(n0 + n1) n0 + n1

]
. (99)

We therefore have that

Var(δ̂) =
σ2
ε

2f(1− f)

(
1

n0

+
1

n0 + n1

)
. (100)

We can compare this to the variance of the estimator of direct effects using only the n0 trios,
δ̂0:

Var(δ̂0)

Var(δ̂)
= 1 +

n1

2n0 + n1

→ 2 as
n1

n0

→∞. (101)

Similarly, if we consider combining a sample of n0 sibling pairs where we have imputed the
sum of maternal and paternal genotypes using phased data with a sample of n1 singletons, it
can be shown that, assuming the correlation between siblings’ residuals is zero (r = 0),

Var(θ̂) =
σ2
ε

2f(1− f)

1

n0(2n0 + n1)

[
3n0 + n1 −(2n0 + n1)
−(2n0 + n1) 2n0 + n1

]
. (102)

We can compare this to the variance of the estimator of direct effects using only the n0 sibling
pairs, δ̂0:

Var(δ̂0)

Var(δ̂)
= 1 +

n1

2(3n0 + n1)
→ 1.5 as

n1

n0

→∞. (103)

7 Effect of population structure

We analyse estimation of direct effects and NTCs using imputed parental genotypes in a struc-
tured population. We consider a population divided into K subpopulations, where within each
subpopulation, there is random-mating, and there is no migration between subpopulations. Let
gkij be the genotype of sibling j in family i in subpopulation k = 1, . . . , K. We denote the
allele frequency in subpopulation k as fk, and the overall allele frequency in the population,
f = Ek[fk], where the expectation is taken over the k subpopulations. The measure of pop-

ulation structure relevant for the theoretical results in this section is FST = Vark(fk)
f(1−f)

, where

Vark(fk) is the variance of allele frequencies across subpopulations.
If the subpopulation memberships of each family were known, then the imputation could use

the subpopulation specific allele frequencies. However, a more realistic scenario is population
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structure that is unknown, so that imputation proceeds assuming random-mating in the overall
population, i.e. using the allele frequencies of the overall population.

The imputation from a sibling pair using phased data and IBD is therefore:

ĝkpar(i) =


gki1 + gki2 = gkpar(i), if IBD = 0

gki1 + gaki2 + f, if IBD = 1

gki1 + 2f, if IBD = 2,

(104)

where a ∈ {m, p} is such that gaki2 is not IBD with the alleles inherited by sibling 1 in family
i in subpopulation k, and gkpar(i) is the sum of maternal and paternal genotypes in family i
from subpopulation k. From this, we derive that E[ĝkpar(i)] = 3fk + f , which implies that the
imputation is biased when fk 6= f . We therefore cannot directly carry over theoretical results
from Section 2 that show estimates are unbiased and consistent when using parental genotypes
imputed using the overall population frequency when FST > 0.

In order to determine what bias, if any, imputation using overall allele frequencies in a
structured population introduces, the following results are useful. First, the variance of the
genotype in the overall population, Var(g), which we compute using the Law of Total Variance:

Var(g) = Ek[Var(gkij)] + Vark(E[gkij]); (105)

= Ek[2fk(1− fk)] + Vark(2fk); (106)

= 2f − 2E[f 2
k ] + 4Vark(fk); (107)

= 2f(1− f) + 2Var(fk); (108)

= 2f(1− f)

[
1 +

Var(fk)

f(1− f)

]
; (109)

= 2f(1− f)[1 + FST ]. (110)

Following a similar procedure, we compute the variance of the combined parental genotype,
Var(gpar), in the overall population:

Var(gpar) = Ek[Var(gkpar(i))] + Vark(E[gkpar(i)]); (111)

= Ek[4fk(1− fk)] + Vark(4fk); (112)

= 4f(1− f)[1 + 3FST ]. (113)

The covariance between offspring and parent genotype, Cov(g, gpar), in the overall population
is:

Cov(g, gpar) = Ek[Cov(gkij, gkpar(i))] + Covk(E[gkij],E[gkpar(i)]); (114)

= Ek[2fk(1− fk)] + Covk(2fk, 4fk); (115)

= 2f(1− f)[1 + 3FST ]. (116)
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While there is random-mating within each subpopulation, so that maternal and paternal geno-
types are uncorrelated, this is not true in the overall population when FST > 0:

Cov(gm, gp) = Ek[Cov(gkm(i), gkp(i))] + Covk(E[gkm(i)],E[gkp(i)]); (117)

= Covk(2fk, 2fk); (118)

= 4f(1− f)FST . (119)

7.1 Imputation from siblings

Here we analyse estimating direct and average non-transmitted coefficients in a structured
population when parental genotypes are imputed from sibling pair genotypes using the allele
frequency in the overall population, as defined in (104). The phenotype model is

Ykij = δgkij + αgkpar(i) + εkij, (120)

where εkij is uncorrelated with both proband and parental genotype. Let Yk be the phenotype

vector in subpopulation k, and let X̂k = [gkij, ĝkpar(i)] be the corresponding matrix of proband
and parental genotypes imputed from sibling genotypes and phased data using the overall
allele frequency as in (104). We examine least-squares estimation of θ = [δ, α]T in the overall
population:

θ̂ = (X̂T X̂)−1X̂TY, where X̂ =


X1

X2
...
XK

 and Ŷ =


Y1

Y2
...
YK

 . (121)

As the overall sample size goes to infinity,

θ̂ →
[

Var(g) Cov(g, ĝpar)
Cov(g, ĝpar) Var(ĝpar)

]−1 [
Var(g) Cov(g, gpar)

Cov(ĝpar, g) Cov(ĝpar, gpar)

]
θ. (122)

To compute the limit, we need to compute Cov(g, ĝpar), Cov(ĝpar, gpar), and Var(ĝpar). We begin
with Var(ĝpar):

Var(ĝpar) = Ek[Var(ĝkpar(i))] + Vark(3fk + f). (123)

To compute Var(ĝkpar(i)), we condition on the IBD state of the siblings:

Var(ĝkpar(i)) = E[Var(ĝkpar(i)|IBD)] + Var(E[ĝkpar(i)|IBD]). (124)

As in the random-mating population, E[Var(ĝkpar(i)|IBD)] = 3fk(1−fk). However, unlike in the
random-mating population, the expectation of the imputed parental genotype depends upon the
IBD state, since that determines how many alleles we impute with the overall population allele
frequency, which differs from the allele frequency in each subpopulation. Since E[ĝkpar(i)] =
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3fk + f , which is also the expectation when IBD=1, and the deviation from the expectation
for IBD=0 is (fk − f) and for IBD=2 is (f − fk), we have

Var(E[ĝkpar(i)|IBD]) =
1

4
(fk − f)2 +

1

4
(f − fk)2 =

(fk − f)2

2
. (125)

Therefore,

Var(ĝpar) = Ek[3fk(1− fk) + (fk − f)2/2] + 9Vark(fk) (126)

= 3f(1− f)[1 + (13/6)FST ]. (127)

We now compute Cov(g, ĝpar):

Cov(g, ĝpar) = Ek[Cov(gkij, ĝkpar(i))] + Covk(2fk, 3fk + f); (128)

= Ek[2fk(1− fk)] + 6Vark(fk); (129)

= 2f(1− f)[1 + 2FST ]; (130)

where we have used the fact that Cov(gkij, ĝkpar(i)) = 2fk(1− fk) within each subpopulation.
We now compute Cov(ĝpar, gpar):

Cov(ĝpar, gpar) = Ek[Cov(ĝkpar(i), gkpar(i))] + Covk(3fk + f, 4fk); (131)

= Ek[3fk(1− fk)] + 12Vark(fk); (132)

= 3f(1− f)[1 + 3FST ]; (133)

where we have used the fact that Cov(ĝkpar(i), gkpar(i)) = 3fk(1− fk) within each subpopulation.

We can now compute the limit of θ̂ as the overall sample goes to infinity:

θ̂ →
[

2(1 + FST ) 2(1 + 2FST )
2(1 + 2FST ) 3(1 + (13/6)FST )

]−1 [
2(1 + FST ) 2(1 + 3FST )
2(1 + 2FST ) 3(1 + 3FST )

]
θ. (134)

After some algebra, we obtain

θ̂ →
[
δ + bα

(1 + a)α

]
; (135)

where

b =
FST (1 + 3FST )

2(1− FST )(1 + 2FST ) + FST (1 + FST )
; and (136)

a =
FST (1− 3FST )

2(1− FST )(1 + 2FST ) + FST (1 + FST )
. (137)

When there is little differentiation at the locus and FST is small,

θ̂ →
[
δ + bα

(1 + a)α

]
≈
[
δ + (FST/2)α

(1 + (FST/2))α

]
, (138)
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The imputation therefore leads to biased estimates of both δ and α in proportion to the FST at
the locus. This is due to the fact that the expectation of the imputed parental genotype changes
with the IBD state of the siblings, leading to excess variance in the imputed parental genotype
that is correlated with subpopulation membership. Without the change in expectation with
IBD state, the variance of the imputed parental genotype would be 3f(1− f)[1 + 2FST ] rather
than 3f(1 − f)[1 + (13/6)FST ]. It is straightforward to show that, if this was the case, then
estimator for δ would be consistent.

7.2 Fixing the bias

The above analysis suggests that the bias derives from the fact that the expectation of the
imputed parental genotype varies across IBD state of the siblings. If one performed separate
regressions for siblings in different IBD states, this variation in the expectation of the imputed
parental genotype would no longer be relevant. We therefore propose an estimator for δ that
is robust to population structure:

1. Perform a regression of phenotype onto proband genotype and imputed parental genotype
for siblings with IBD=0. Call this δ̂0

2. Perform a regression of phenotype onto proband genotype and imputed parental genotype
for siblings with IBD=1. Call this δ̂1

3. The estimate of δ is then the inverse-variance weighted average of δ̂0 and δ̂1. Call this δ̂.

We do not use siblings with IBD=2 since these siblings cannot provide unbiased estimates
of δ. For siblings with IBD=2, the imputed parental genotype is collinear with the siblings’
genotypes. For these siblings, a univariate regression of phenotype onto proband genotype
estimates δ + ((1 + 3FST )/(1 + FST ))α.

We now proceed to prove that this estimator is a consistent estimator for δ, and to compute
its sampling variance for the case of n independent families with two genotyped and pheno-
typed siblings per family, as in Section 4.2 for a random-mating population. For notational
convenience, we consider that the families have been ordered by their IBD state, with families
1 to n0 having IBD=0, families n0 + 1 to n0 + n1 having IBD=1, and families n0 + n1 + 1 to n
having IBD=2.

7.2.1 IBD=0

For siblings with IBD=0, the imputed parental genotype is equal to actual parental genotype,
and the sum of the siblings’ genotypes is equal to the actual parental genotype. The estimator
is therefore both unbiased and consistent, since the imputation is unbiased (See Theorems 2 and
3). We now derive the variance of the estimator, following a procedure similar to Section 4.2.
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Let θ̂0 be the generalized least squares estimator. For n0 families where the siblings are in
IBD0, the variance of the generalized least-squares estimator is approximately:

Var(θ̂0) ≈

(
n0∑
i=1

XT
i Σ−1

i Xi

)−1

, (139)

where

Xi =

[
gi1 gpar(i)

gi2 gpar(i)

]
; Σ−1

i =
1

σ2
ε (1− r2)

[
1 −r
−r 1

]
. (140)

We assume that the genotypes have been mean normalised for ease of exposition. As the overall
sample size tends to infinity (see (62)),

n0∑
i=1

XT
i Σ−1

i Xi →
n0

σ2
ε (1− r2)

[
2(Var(gi1)− 2rCov(gi1, gi2|IBD=0)) (1− r)Var(gpar(i))

(1− r)Var(gpar(i)) 2(1− r)Var(gpar(i))

]
,

(141)
where the variances and covariances are over all families where the siblings have IBD=0. Since
the IBD state of the siblings is independent of the subpopulation of the family, the proportions of
families from each subpopulation in the subsample that have IBD=0 will reflect the proportions
of each subpopulation in the overall sample as the sample tends to infinity.

We now compute the covariance between the siblings conditional on IBD=0:

Cov(gi1, gi2|IBD=0) = Ek[Cov(gki1, gki2|IBD=0)] + Covk(2fk, 2fk). (142)

Since there is random-mating in each subpopulation and the siblings do not share any alleles
IBD, Cov(gki1, gki2|IBD=0) = 0. Therefore,

Cov(gi1, gi2|IBD=0) = 4f(1− f)FST . (143)

Combining this with previously derived results, we obtain

n0∑
i=1

XT
i Σ−1

i Xi →
4n0f(1− f)

σ2
ε (1− r2)

[
1 + (1− 2r)FST (1− r)(1 + 3FST )

(1− r)(1 + 3FST ) 2(1− r)(1 + 3FST ).

]
(144)

By inverting this matrix, we obtain the approximate large-sample variance of θ̂0:

Var(θ̂0) ≈ σ2
ε

4(1− FST )(1 + 3FST )n0f(1− f)

[
2(1− r)(1 + 3FST ) −(1− r)(1 + 3FST )
−(1− r)(1 + 3FST ) 1 + (1− 2r)FST

]
.

(145)
Therefore,

Var(δ̂0) ≈ (1− r)σ2
ε

2(1− FST )n0f(1− f)
. (146)
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7.2.2 IBD=1

Let θ̂1 be the generalized least squares estimator from siblings that have IBD=1. The general-
ized least-squares estimator from siblings with IBD=1 is:

θ̂1 =

(
n0+n1∑
i=n0+1

XT
i Σ−1

i Xi

)−1( n0+n1∑
i=n0+1

XT
i Σ−1

i Yi

)
. (147)

As the overall sample size tends to infinity,

n0+n1∑
i=n0+1

XT
i Σ−1

i Xi →
n1

σ2
ε (1− r2)

[
2(Var(gi1)− 2rCov(gi1, gi2|IBD=1)) (1− r)Cov(ĝpar(i), gi1 + gi2|IBD=1)

(1− r)Cov(ĝpar(i), gi1 + gi2|IBD=1) 2(1− r)Var(ĝpar(i)|IBD=1)

]
(148)

We compute the covariance between the siblings conditional on IBD=1:

Cov(gi1, gi2|IBD=1) = Ek[Cov(gki1, gki2|IBD=1)] + Covk(2fk, 2fk). (149)

Since there is random-mating in each subpopulation, and the siblings share one allele IBD,
Cov(gki1, gki2|IBD=1) = f(1− f). Therefore,

Cov(gi1, gi2|IBD=1) = f(1− f)[1 + 3FST ]. (150)

The covariance between imputed parental genotype and the sum of siblings’ genotypes condi-
tional on IBD=1 is

Cov(ĝpar(i), gi1 + gi2|IBD=1) = Ek[4fk(1− fk)] + Covk(3fk + f, 4fk) (151)

= 4f(1− f)[1 + 2FST ]. (152)

Finally, the variance of imputed parental genotype conditional on IBD=1 is

Var(ĝpar(i)|IBD=1) = Ek[3fk(1− fk)] + Vark(3fk + f) (153)

= 3f(1− f)[1 + 2FST ]. (154)

Therefore,

n0+n1∑
i=n0+1

XT
i Σ−1

i Xi →
2n1f(1− f)

σ2
ε (1− r2)

[
(2− r) + (2− 3r)FST 2(1− r)[1 + 2FST ]

2(1− r)[1 + 2FST ] 3(1− r)[1 + 2FST ]

]
. (155)

By inverting the above, we obtain the approximate large-sample variance of θ̂1:

Var(θ̂1) ≈

(
n0+n1∑
i=n0+1

XT
i Σ−1

i Xi

)−1

→ (156)
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(1 + r)σ2
ε

2(2 + r)(1− FST )(1 + 2FST )n1f(1− f)

[
3(1− r)(1 + 2FST ) −2(1− r)(1 + 2FST )
−2(1− r)(1 + 2FST ) (2− r) + (2− 3r)FST

]
.

(157)
To prove consistency, we also need the limit of

∑n0+n1

i=n0+1X
T
i Σ−1

i Yi:

n0+n1∑
i=n0+1

XT
i Σ−1

i Yi →
n1

σ2
ε (1− r2)

[
2(Var(gi1)− 2rCov(gi1, gi2|IBD=1)) 2(1− r)Cov(gpar(i), gi1)

(1− r)Cov(ĝpar(i), gi1 + gi2|IBD=1) 2(1− r)Cov(ĝpar(i), gpar(i)|IBD=1)

]
θ

(158)

To compute the above, we need to compute Cov(ĝpar(i), gpar(i)|IBD=1):

Cov(ĝpar(i), gpar(i)|IBD=1) = Ek[3fk(1− fk)] + Covk(3fk + f, 4fk) (159)

= 3f(1− f)[1 + 3FST ]. (160)

Using the results derived above,

n0+n1∑
i=n0+1

XT
i Σ−1

i Yi →
2n1f(1− f)

σ2
ε (1− r2)

[
(2− r) + (2− 3r)FST 2(1− r)[1 + 3FST ]

2(1− r)[1 + 2FST ] 3(1− r)[1 + 3FST ]

]
θ. (161)

After some algebra, this enables us to compute the limit of θ̂1 as the overall sample goes to
infinity:

θ̂1 →
[

δ
1+3FST

1+2FST
α

]
. (162)

Therefore, δ̂1 is a consistent estimator of δ with approximate variance

Var(δ̂1) ≈ 3(1− r2)σ2
ε

2(2 + r)(1− FST )n1f(1− f)
(163)

7.2.3 Combining IBD=1 and IBD=0

Since both δ̂1 and δ̂0 are consistent estimators of δ, the inverse-variance weighted average of δ̂1

and δ̂0, δ̂, is also a consistent estimator of δ. We now compute its variance:

Var(δ̂) = (Var(δ̂0)−1 + Var(δ̂1)−1)−1. (164)

Using the above results, we have that

Var(δ̂0)−1 + Var(δ̂1)−1 ≈ 2(1− FST )f(1− f)

σ2
ε (1− r)

(
n0 +

(2 + r)n1

3(1 + r)

)
. (165)

As the probability a sibling pair is in IBD0 is 1/4, and the probability a sibling pair is in IBD1
is 1/2, as the overall sample size, n, tends to infinity, n0 → n/4 and n1 → n/2. Therefore,

2(1− FST )f(1− f)

σ2
ε (1− r)

(
n0 +

(2 + r)n1

3(1 + r)

)
→ 2(1− FST )f(1− f)n

σ2
ε (1− r)

(
1

4
+

(2 + r)

6(1 + r)

)
. (166)
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By simplifying this expression and taking the inverse, we obtain the approximate large sample
variance of δ̂:

Var(δ̂) ≈ 6(1− r2)σ2
ε

(7 + 5r)(1− FST )nf(1− f)
. (167)

This can be compared with the variance of the estimator of δ from regressing phenotypic
differences onto genetic differences between siblings, δ̂∆.

Var(δ̂∆) =
(1− r)σ2

ε

(1− FST )nf(1− f)
. (168)

Therefore,
Var(δ̂∆)

Var(δ̂)
=

7 + 5r

6(1 + r)
= 1 +

1− r
6(1 + r)

. (169)

We therefore see that the effective sample size from this estimator is 1/6th larger than from
the sibling difference estimator when r = 0, irrespective of FST .

7.3 Imputation from parent-offspring pairs

We consider estimating the following model:

Yki = δgki + αpgkp(i) + αmgkm(i) + εki, (170)

where gkp(i) is the genotype of the father in family i in subpopulation k, gkm(i) is the genotype
of the mother in family i in subpopulation k, and εki is uncorrelated with gki, gkp(i), and gkm(i).

Consider imputing the genotype of the father given the genotypes of the mother and offspring
in a family:

ĝkp(i) = gpki + f, (171)

where gpki is the genotype of the paternally inherited allele of the offspring in family i in sub-
population k, and ĝkp(i) is the imputed genotype of the father. The imputation is biased since
E[ĝkp(i)] = fk + f 6= 2fk when fk 6= f .

Let Yk be the phenotype vector in subpopulation k, and let X̂k = [gki, ĝkp(i), gkm(i)] be the
corresponding matrix of observed and imputed genotypes. We examine least-squares estimation
of θ = [δ, αp, αm]T in the overall population:

θ̂ = (X̂T X̂)−1X̂TY, where X̂ =


X1

X2
...
XK

 and Ŷ =


Y1

Y2
...
YK

 . (172)

To compute the limit of θ̂ as the overall sample size goes to infinity, we need to compute the
variances and covariances between observed and imputed genotypes in the overall population.
Following the same procedure as above for imputation from sibling pairs, we obtain:

Var(ĝkp(i)) = f(1− f); Cov(gkm(i), ĝkp(i)) = 2f(1− f)FST ; (173)
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Cov(gki, ĝkp(i)) = f(1− f)[1 + FST ]; Cov(gkp(i), ĝkp(i)) = f(1− f)[1 + FST ]. (174)

Combining these results with the results derived for imputation from siblings, we obtain

θ̂ →

2(1 + FST ) 1 + FST 1 + 3FST
1 + FST 1 2FST
1 + 3FST 2FST 2(1 + FST )

−1 2(1 + FST ) 1 + 3FST 1 + 3FST
1 + FST 1 + FST 4FST
1 + 3FST 2FST 2(1 + FST )

 θ. (175)

After some algebra, this simplifies to:

θ̂ →

 δ
(1 + c)αp
αm + cαp

 , where c =
FST

1 + 2FST
. (176)

This shows that the estimator for the direct effects remains consistent, with biases introduced
into estimates of the non-transmitted coefficients in proportion to the FST at the locus.

8 PGI analysis with assortative mating

In this section, we analyse the potential bias that could be introduced into analyses of imputed
polygenic indexs for traits affected by assortative mating. In this section, we assume a simplified
model for the polygenic index. We assume that there are L unlinked sites with equal weights w
and equal allele frequencies f . Unlinked here means that the sites are transmitted from parents
independently, so that they would be uncorrelated in a random-mating population. While this
model is unrealistic, it has been used to derive many classical results on assortative mating, and
applies well to polygenic indexs constructed from many genome-wide SNPs of small effect[5],
as is typical for complex human traits. Let PGIij be the polygenic index of sibling j in family
i, then

PGIij = w
L∑
l=1

(gijl − 2f); PGIm(i) = w
L∑
l=1

(gm(i)l − 2f); PGIp(i) = w
L∑
l=1

(gp(i)l − 2f); (177)

PGIpar(i) = w

L∑
l=1

(gp(i)l + gm(i)l − 4f). (178)

where gijl is the genotype of sibling j in family i at locus l, gm(i)l is the genotype of the mother
in family i at locus l, and gp(i)l is the genotype of the father in family i at locus l. Note that
expectations of the PGIs are zero.

We consider imputing the parental PGI (sum of maternal and paternal PGI) from the
observed genotypes of two sibling offspring of those parents at the L loci:

ˆPGIpar(i) = w

L∑
l=1

(ĝpar(i)l − 4f), (179)

32



where

ĝpar(i)l =


gi1l + gi2l = gpar(i)l, if IBDl = 0

gi1l + gki2l + f, if IBDl = 1

gi1l + 2f, if IBDl = 2,

(180)

where gki2 is the allele in sibling 2 that is not shared IBD with the alleles of sibling 1. We note
that ĝpar(i) = E[gpar(i)|gi1, gi2, IBD] under random-mating, but is not equal to this when there
is assortative mating due to correlations between alleles transmitted to the siblings and those
not transmitted to the siblings. Under random-mating, we have that

ˆPGIpar(i) = E[PGIpar(i)|{gi1l, gi2l, IBDl}Ll=1]; (181)

i.e. the imputed parental PGI is the conditional expectation of the parental PGI given the
genotypes of the siblings at the L loci and the IBD state of the siblings at those loci. However,
this is not the case under assortative mating.

We consider assortative mating that has reached an equilibrium where

ram = Corr(PGIp(i),PGIm(i)), (182)

and therefore the correlations between distinct alleles in the parents and offspring are all equal
to

m =
ram

2L(1− ram) + ram
, (183)

as given first by Wright[5, 6].

8.1 Joint distribution of observed and imputed PGIs

We derive the equilibrium variances and covariances between parental, imputed parental, and
offspring PGIs in Appendix A. Let Zij = [PGIij, ˆPGIpar(i), PGIpar(i)]

T , and let V0 be the
variance of the PGI in a random mating population. As L→∞,

Cov(Zij)→
V0

1− ram

 1 1 + ram/2 1 + ram
1 + ram/2 (3/2)(1 + ram/2) (3/2)(1 + ram)
1 + ram (3/2)(1 + ram) 2(1 + ram)

 . (184)

8.2 Estimating the direct effect of a PGI

We consider estimating θ = [δ, α]T from the model

Yij = δPGIij + αPGIpar(i) + εij, (185)
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by least-squares regression on [PGIij, ˆPGIpar(i)]. Let θ̂ be the resulting estimator of θ, then,
given that εij is uncorrelated with PGIij and PGIpar(i),

θ̂ →
[

1 1 + ram/2
1 + ram/2 (3/2)(1 + ram/2)

]−1 [
1 1 + ram

1 + ram/2 (3/2)(1 + ram)

]
θ (186)

=
1

1− ram

[
3 −2
−2 4

2+ram

] [
1 1 + ram

1 + ram/2 (3/2)(1 + ram)

]
=

[
δ

2(1+ram)
2+ram

α

]
. (187)

We therefore see that the bias in estimation of α is equal to ram
2+ram

α, and that estimation of δ
is consistent. Univariate regression of proband phenotype onto proband PGI gives an expected
coefficient of δ + (1 + ram)α, and subtracting δ from this results in an estimate of α that is
more biased: (1 + ram)α.

In general, the imputed parental PGIs do not capture fully the inflation of variance due
to assortative mating, so that the imputation is biased by a multiplicative factor related to
the strength of assortative mating, leading to a multiplicative bias in the estimates of non-
transmitted coefficients, but not the direct or indirect sibling effect estimates.

8.3 Adjusting for the bias introduced by assortative mating

For the analysis of the educational attainment PGI in the main text, we used Equation 187 to
adjust for the bias in α introduced by assortative mating. In this analysis, parental genotypes
were imputed from sibling genotypes (without observed parental genotypes) in 88.8% of the
sample, and for 92.8% of those individuals, the parental genotypes were imputed from a single
sibling pair. This suggests that Equation 187 should provide a good approximation, provided
that AM has reached an approximate equilibrium. The formula implies that parental effect
estimates are inflated by a factor of (1 + ram)/(1 + ram/2), where ram is the correlation between
the maternal and paternal PGI at equilibrium. To compute ram, we took advantage of the
fact that the correlation between siblings’ PGI values is equal to (1 + ram)/2 at equilibrium
(see Nagylaki[7]). We estimated the correlation between siblings’ PGI to be 0.557, giving an
estimate of 0.114 for ram, implying that average NTC estimates are inflated by a factor of
around 1.054. We therefore divided the average NTC estimates by 1.054 to produce adjusted
NTC estimates (Supplementary Tables 3 and 5).

9 Inferring IBD between siblings

We infer the identity-by-descent sharing states of a sibling pair by using a Hidden Markov
Model (HMM). Let gijl be the un-phased genotype (0, 1, or 2) of sibling j in family i at SNP
l = 1, . . . , L, and let IBDil ∈ {0, 1, 2} be the IBD state of the sibling pair at SNP l. We
consider that SNPs l = 1, . . . , L are ordered by position on a single chromosome, and that the
genetic map is known, so that d(l, l′) gives the distance between SNPs l and l′ in centiMorgans
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(cM). The goal of inference is to find the path, IBDi = {IBDil}Ll=1, that maximises the joint
probability

P(IBDi, {gi1l}Ll=1, {gi2l}Ll=1). (188)

In order to make this problem tractable, we make some simplifying assumptions. First, we
assume that the IBD states follow a Markov process such that

P(IBDi(l+1)|{IBDik}lk=1) = P(IBDi(l+1)|IBDil). (189)

Note that there are four independent meioses leading to the two siblings’ genotypes: one for
each parent for each sibling. To compute P(IBDi(l+1)|IBDil), we consider the probability that
there is a recombination event during one of the meioses given a distance of d cM:

P(recombination | d cM) = P(Odd number of cross-overs in d cM) =
1− exp(−d/50)

2
. (190)

Therefore, the probability of at least one recombination across the four independent meioses
given a distance of d cM is:

P(at least 1 recombination in two sibs | d cM) = 1−
(

1 + exp(−d/50)

2

)4

= ρ(d). (191)

We make the simplifying assumption that the IBD state changes only by 1 between subsequent
SNPs. By symmetry, a transition from IBD=1 to IBD=0 is of equal probability to a transition
from IBD=1 to IBD=2; therefore, the transition matrix between SNPs l and l+1 with distance
d cM is:

0 1 2( )0 1− ρ(d) ρ(d) 0
1 ρ(d)/2 1− ρ(d) ρ(d)/2
2 0 ρ(d) 1− ρ(d)

. (192)

Since SNPs on the same chromosome tend to be in linkage disequilibrium, probabilities of
observing sibling genotypes at state l and state l+1 are not independent. Working with the full
joint-distribution of sibling genotypes and IBD states would make inference computationally
challenging. We instead approximate the full joint-distribution by weighting the contribution
to the log-likelihood from the siblings’ genotypes at each SNP according to the inverse of the
SNP’s LD-score, as in Speed et al.[8] for the problem of inferring variance components from
SNP-level summary statistics. Let λl be the LD-score of SNP l. We can thereby compute the
approximate joint log-likelihood as

log(P(IBDi, {gi1l}Ll=1, {gi2l}Ll=1)) ≈ (193)

log(P(IBDi1)) +
L∑
l=2

log(P(IBDil|IBDi(l−1))) +
L∑
l=1

λ−1
l log(P(gi1l, gi2l|IBDil)). (194)
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The probabilities of the initial states are given by the Laws of Mendelian Inheritance, with
P(IBDi1 = 2) = P(IBDi1 = 0) = 0.25. Let fl be the allele frequency of the allele being counted
at SNP l, with E[gijl] = 2fl. The probabilities of the siblings’ genotypes given IBD state are
given assuming random-mating:

P(gi1l, gi2l|IBDi1 = 0) = P(gi1l)P(gi2l), (195)

where gijl ∼ Binomial(2, fl). For IBD=2, P(gi1l, gi2l|IBDi1 = 2) = P(gi1l) if gi1l = gi2l; and
P(gi1l, gi2l|IBDi1 = 2) = 0, if gi1l 6= gi2l. For IBD=1, the joint probabilities are given in
Supplementary Note Table 5.

The above defines a Hidden Markov Model with hidden states IBD=0, IBD=1, IBD=2.
The path that maximises (194), ˆIBDi, can be computed in O(L) operations using the Viterbi
algorithm[9].

9.1 With genotyping errors

In the above, we assumed that genotypes are observed without error. In applications to real
data, genotyping errors occur typically at a very low rate. Even at a low rate, genotyping errors
can cause problems for inferring IBD segments. Consider a genotyping error in an IBD=2 region
leading to a difference between the siblings’ genotypes: this is not possible according to a model
without genotyping errors, so the algorithm would be forced to transition in and out of IBD=1
to accommodate the genotyping error.

We introduce an additional layer to the above model that allows for observed genotypes to
differ from true genotypes due to genotyping error. We assume that the observed genotype can
only differ from the true genotype by 1[10]. Let g̃ijl be the observed genotype of sibling j in
family i at SNP l. Given a genotyping error probability of γ, we model errors as

P(g̃ijl|gijl) = 1− γ, if g̃ijl = gijl; (196)

P(g̃ijl|gijl = 1) = γ/2, if g̃ijl 6= gijl; (197)

P(g̃ijl|gijl 6= 1) = γ, if |g̃ijl − gijl| = 1; (198)

P(g̃ijl|gijl 6= 1) = 0, if |g̃ijl − gijl| = 2. (199)

We assume that genotyping errors are independent between siblings and independent of the
IBD state and l. The probability of the observed genotypes given the IBD state is therefore:

P(g̃i1l, g̃i2l|IBDil) =
∑

gi1l,gi2l

P(g̃i1l|gi1l)P(g̃i2l|gi2l)P(gi1l, gi2l|IBDil). (200)

We find the path, ˆIBDi, that maximises

log(P(IBDi1)) +
L∑
l=2

log(P(IBDil|IBDi(l−1))) +
L∑
l=1

λ−1
l log(P(g̃i1l, g̃i2l|IBDil)). (201)
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9.2 Smoothing

Even with a genotyping error model, we found that the above model tended to produce some
very short IBD segments indicative of overfitting (possibly due to high levels of local LD) or
excessive genotyping errors in an individual or a SNP not well captured by the genotyping error
model. We therefore added a simple routine to smooth the Viterbi path. If an IBD segment
differs in state from its adjacent segments, and the adjacent segments have the same state as
each other, and the IBD segment’s length in cM is below a threshold m, we set the IBD state
of the SNPs covered by that segment to be equal to the IBD state of the adjacent segments.

9.3 Parameter optimization

For the application to UKB data, in order to estimate the accuracy of the inferred IBD segments
and to choose optimal parameters γ and m, we used 31 families where two siblings and both
of their parents have been genotyped (quads) to infer the true IBD state for a subset of SNPs:
when both parents are heterozygous, the IBD state of the siblings is equal to 2 minus the
absolute difference in the siblings’ genotypes, except when both siblings are heterozygous. We
smoothed the true IBD inferred from the quads to account for genotyping errors: if the IBD
state at a SNP differed from its neighbours, and both neighbours had the same IBD state, we
changed the IBD state of the SNP to be the same as its neighbours.

To infer the IBD segments between siblings, we used the un-phased SNPs on the UKB
genotyping array with MAF>1%. We chose the parameters γ and m by performing a grid search
over log10(γ) from -5 to -1 in increments of 0.5, and for log10(PcM) = log10(1− exp(−m/100))
from -5 to -1 in increments of 0.5. PcM is the probability of observing a segment as short or
shorter than m. For each tuple (γ,m), we calculated the probability of inferring the correct IBD
state by comparing the inferred IBD state to the true IBD state for all SNPs where we could
infer the true IBD state. We found that (γ,m) = (10−4, 0.01 cM) gave the highest probability
of inferring the true IBD state, 99.65%. We give the proportions of SNPs with inferred IBD
states 0, 1, and 2 as a function of the true IBD state in Supplementary Table 1.

10 Mixed model inference

We use a mixed model to account for correlations between individuals within a family. The
data are comprised of observations on n families. For family i, there are ni observations, giving
a total of

∑n
i=1 ni = N observations. We assume that the data has been ordered so that the

observations from family 1 are indexed from 1 to n1, the observations from individual 2 are
indexed from n1 + 1 to n1 + n2, etc.

The phenotype is an [N × 1] vector Y and the covariate matrix is an [N × c] matrix X.
The X matrix can be constructed using the genotypes of the siblings and/or (imputed) parents
in different ways depending on the application. We introduce a [N × n] matrix Z such that
[Z]ij = 1 if observation i is from family j, and [Z]ij is zero otherwise. We assume that the
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within-family means are independently normally distributed, represented by an [n × 1] vector
u ∼ N (0, σ2

F In). The model is
Y = Xθ + Zu+ ε. (202)

We assume that the residuals are I.I.D. Gaussians, ε ∼ N(0, σ2I). The distribution of Y |X is
therefore,

Y |X ∼ N (Xθ, σ2
FZZ

T + σ2
ε I). (203)

It can readily be inferred that ZZT has a simple block-diagonal structure. For n = 2, the
matrix has the following structure:

ZZT =

[
1n11

T
n1

0
0 1n21

T
n2

]
, (204)

where 1k is the [k × 1] column vector of all 1s.

10.1 Loss function and gradients

Instead of the optimising the likelihood, we seek to minimise negative two times the log-
likelihood as a loss function:

L = log |Σ|+ (y −Xθ)TΣ−1(y −Xθ), (205)

where Σ = σ2
FZZ

T + σ2
ε I.

Naive computation of the loss function takes O(N3) operations. However, the likelihood
component of the loss function can be split into a sum over families. Let Σi be the diagonal
block of Σ corresponding to observations on family i. Furthermore, let yi be the [ni× 1] vector
of observations for individual i, and let Xi be the [ni × c] matrix of covariate observations.
Then,

L =
n∑
i=1

log |Σi|+
n∑
i=1

(yi −Xiθ)
TΣ−1

i (yi −Xiθ), (206)

It is straightforward to show that the MLE for θ, θ̂, given the variance parameters, corresponds
to the generalised least-squares estimator:

θ̂ =

(
n∑
i=1

XT
i Σ−1

i Xi

)−1( n∑
i=1

XT
i Σ−1

i yi

)
. (207)

It is also straightforward to show that the asymptotic sampling variance of the MLE for θ is:

Var(θ̂) =

(
n∑
i=1

XT
i Σ−1

i Xi

)−1

. (208)

38



To derive the gradient with respect to the variance parameters, we introduce τ = σ2
ε/σ

2
F , and

parameterise the model in terms of τ and σ2
ε . Because the blocks of Σ are comprised of a diagonal

plus a rank-one matrix, the determinant and inverse of each block can be computed analytically
using the Sherman-Morrison-Woodbury identity and the Matrix Determinant Lemma. This
gives

Σ−1
i =

1

σ2
ε

(
Ini
−

1ni
1Tni

τ + ni

)
; log |Σi| = ni log(σ2

ε ) + log
(

1 +
ni
τ

)
. (209)

The loss function can thus be expressed as

L = N log(σ2
ε ) +

n∑
i=1

log
(

1 +
ni
τ

)
+

(y −Xθ)T (y −Xθ)
σ2
ε

− 1

σ2
ε

n∑
i=1

[1Tni
(yi −Xiθ)]

2

τ + ni
, (210)

which can be computed in O(N) operations. From this, we derive expressions for the gradient
with respect to the variance parameters that can also be computed in O(N) operations:

∂L

∂σ2
ε

=
N

σ2
ε

− (y −Xθ)T (y −Xθ)
σ4
ε

+
1

σ4
ε

n∑
i=1

[1Tni
(yi −Xiθ)]

2

τ + ni
; (211)

and
∂L

∂τ
=

1

σ2
ε

n∑
i=1

[1Tni
(yi −Xiθ)]

2

(τ + ni)2
−

n∑
i=1

ni
τ(τ + ni)

. (212)

10.2 Optimisation

The parameters we are optimising over are θ = (θ, σ2
ε , τ). However, since the MLE for θ can be

computed efficiently analytically given an estimate of τ , we instead optimise

Lprof(σ
2
ε , τ) = L(θ̂(τ), σ2

ε , τ), (213)

where the optimisation takes place over (σ2
ε , τ) only, with the MLE for θ for a given τ , θ̂(τ),

computed analytically.
We optimise the model with the L-BFGS-B algorithm, with (σ2

ε , τ) bounded below at
(10−5, 10−5). For application to a set of SNPs from a chromosome, a null model including
no SNPs is first fit. By default, we initialise (σ2

ε , τ) to (s2
Y /2, 1), where s2

Y is the sample esti-
mate of the phenotypic variance. The MLEs of τ and σ2

ε from the null model are then fixed for
all SNP specific models, allowing analytical computation of the (approximate) MLE for θ for
each SNP. To do this, we first transform the phenotype vector and X by the inverse square root
of Σ given the MLEs for (σ2

ε , τ), which can be computed efficiently given the block-diagonal
structure of Σ. Given this transformation, computation of the MLE for α reduces to ordinary
least squares (OLS). This can be done once for all SNPs reducing the problem for multiple
SNPs to repeated OLS.

Estimating effects for N individuals and M SNPs therefore takes O(N) operations to fit the
variance parameters, and O(NM) operations to transform the phenotype and genotypes and
estimate SNP effects, given the transformed data, through repeated OLS.
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11 Estimating genome-wide correlations between effects

To estimate correlations between different types of effect, such as direct effects and population
effects, we give here a moment-based estimator that accounts for the sampling errors in the
effect estimates. For example, let δ̂l be the direct effect estimate for SNP l, and let β̂l be the
estimated population effect. Then we have that

δ̂l = δl + εδl; β̂l = βl + εβl; (214)

where δl is the true direct effect for that SNP, and εδl is the sampling error; and βl is the true
population effect for that SNP, and εβl is the sampling error. We assume that the variance-
covariance matrix of the sampling errors at each SNP is known:

Var

([
δ̂l
β̂l

])
=

[
σ2
δl rδβlσδlσβl

rδβlσδlσβl σ2
βl

]
, (215)

where σ2
δl is the sampling variance for the direct effect of SNP l, σ2

βl is the sampling variance
for the population effect of SNP l, and rδβl is the sampling correlation between the direct and
population effects for SNP l.

We aim to estimate the genome-wide correlation between the true effects:

r(δ, β) =
Cov(δl, βl)√

Var(δl)Var(βl)
. (216)

Assuming that the true effects have expectation zero across the SNPs and by applying the Law
of Total Variance, we can express the correlation between the true effects as:

r(δ, β) =
Cov(δ̂l, β̂l)− E[Cov(εδl, εβl)]√

(Var(δ̂l)− E[Var(εδl)])(Var(β̂l)− E[Var(εβl)]))
(217)

We use weighted sample estimates of these quantities to obtain our estimator:

r̂(δ, β) =

∑
l wl(δ̂lβ̂l − rδβlσδlσβl)√

(
∑

l wl(δ̂
2
l − σ2

δl))(
∑

l wl(β̂
2
l − σ2

βl))
. (218)

Similar to LDSC[11], we use wl = (fl(1 − fl))/λl as the weight for SNP l, where fl is the
allele frequency, and λl is the LD-score of SNP l. The weighting in proportion to fl(1 − fl)
approximately equalizes the sampling variances across SNPs, and the weighting in proportion
to λ−1

l accounts for correlations between SNPs due to local LD.
For the analyses in the main text, we used the LDSC software package with a 1cM window to

compute LD scores. To estimate standard errors, we used the same block-jacknife approach as
LDSC with 200 blocks. We excluded SNPs with MAF<5%. We used the sampling correlation
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between direct and population effects as a further form of quality control. Outlying values of
this correlation are indicative of IBD inference errors or low genotyping quality. We excluded
SNPs where, for any trait, the inferred sampling correlation between direct and population
effects differed by more than 6 standard deviations from the mean across all SNPs, excluding
101 SNPs.

12 Simulations

12.1 Artificial populations

We simulated 1,000 SNPs for 3,000 parent-pairs. We simulated phased parental genotypes by
drawing from a Bernoulli(0.5) distribution for the presence/absence of the allele on each hap-
lotype. For each parent-pair, we generated two full-sibling offspring. We generated phased and
unphased offspring genotypes and IBD segments by simulating meiosis without recombination.
For the comparison to AlphaFamImpute, we set different sets of genotypes to missing to test
different imputation scenarios, and we imputed missing parental genotypes using snipar and
AlphaFamImpute.

To check the theoretical results on sampling variance, we simulated phenotypes for the
offspring by drawing direct, paternal, and maternal effects for each SNP from a multivariate
normal distribution with correlations of 0.5 between the different effects. We scaled the resulting
effects so that the combined phenotypic variance explained by direct, paternal, and maternal
effects was equal to a given value. We simulated three phenotypes where the combined variance
explained by direct, paternal, and maternal effects was 0.4, 0.2, and 0, generating correlations
between siblings’ phenotypes of 0.336, 0.160, and 0, respectively.

We set all parents’ genotypes to missing, and we imputed the parental genotypes using
snipar applied to both phased and unphased sibling genotypes. We estimated direct, paternal,
and maternal effects using snipar. To compare results to not performing imputation, we esti-
mated direct effects by regression of proband phenotype onto one half of the difference between
the proband’s genotype and the proband’s sibling’s genotype within the same mixed model
framework. We compared the average sampling variance of direct effect estimates when using
parental genotypes imputed from both phased and unphased data to the average sampling
variance of direct effect estimates from differences between sibling genotypes (Extended Data
Figure 3).

12.2 UK Biobank simulations

We simulated multiple realistic populations based on phased haplotypes at 146,634 autosomal
HapMap3 SNPs present on the UKB genotyping array. We used 100,000 randomly selected,
unrelated individuals from the ‘White British’ subsample of the UKB. We paired individuals
into parent-pairs based on random-mating, assortative mating, or by UKB assessment center,
depending on the phenotype. We simulated two offspring for each parent-pair by simulating
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meiosis in each parent using a European recombination map distributed as part of the Eagle
software package[12]; we recorded the IBD segments shared between siblings based upon the
simulated recombination events. We set parental genotypes as missing and imputed them from
unphased genotypes using snipar, and we inferred direct effects and NTCs using the linear
mixed model in snipar, as outlined in Section 10.

For the phenotypes without AM or population stratification, we randomly mated the 100,000
individuals to create 50,000 mother-father pairs that produced 50,000 sibling pairs as offspring.
We simulated phenotypes in the offspring generation by choosing 1,500 SNPs at random to be
causal. For each SNP, we simulated direct effects and parental indirect genetic effects (IGEs)
— chosen to be equal between paternal and maternal — from a bivariate normal distribution
with equal variances and different levels of correlation: 0, 0.5, and 1. We scaled the resulting
effects so that the total variance explained by combined direct effects and parental IGEs was
75% of the phenotypic variance, with the remaining phenotypic variance due to Gaussian noise.
We also simulated a trait without parental IGEs where the direct effects explained 75% of the
phenotypic variance.

12.2.1 Simulating assortative mating

We simulated a separate population with a phenotype affected by direct genetic effects and
AM. We simulated the first generation by randomly pairing individuals into 50,000 parent
pairs, and we simulated offspring by simulating meiosis as above. We simulated direct effects
for 1,500 randomly selected SNPs and scaled the effects so that the variance explained by the
direct effects was 50% in the first offspring generation generated by random-mating. We then
simulated subsequent generations by pairing parents according to their ranks in an ordered list,
where the ordering was determined by the value of their phenotype plus a Gaussian noise term.

Specifically, let Yij be the phenotype of the sibling j in family i. Let sibling 1 be the
male sibling and sibling 2 be the female sibling for all families. We ordered the males by
Zi1 = Yi1+ui1, and we ordered the females by Zi2 = Yi2+ui2, where the uij are independent and
identically distributed as N (0, (1/ry−1)Var(Y )), where ry is the desired phenotypic correlation
between parents, and Var(Y ) is the phenotypic variance in that generation. We chose ry = 0.5,
and we iterated this procedure for 20 generations, reaching an approximate equilibrium: the
relative increase in phenotypic variance from the penultimate to final generation was 0.036%.

The heritability in the final generation was 58.20%, and the variance due to direct effects was
40.82% higher than in the first generation (generated by random-mating). Theory implies that
the genetic variance at equilibrium should be a factor of 1/(1− h2

∞ry) larger than the genetic
variance in a random-mating population, where h2

∞ is the equilibrium heritability and ry is
the phenotypic correlation of parents[7]. Here, h2

∞ = 0.5820 and ry = 0.5, giving a theoretical
prediction that the genetic variance should be inflated by a factor of 1/(1−0.5820∗0.5) = 1.4104
at equilibrium, close to the 40.8% increase we observed in our simulation.
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12.2.2 Simulating vertical transmission

A simple model for vertical transmission[13] is that the phenotype of the offspring is affected
by the same phenotype in the parents:

Yij =
L∑
l=1

δlgijl + bpYp(i) + bmYm(i) + εij, (219)

where gijl is the genotype of sibling j in family i at SNP l, δl is the direct effect of SNP l, Yp(i) is
the phenotype of the father in family i, Ym(i) is the phenotype of the mother, and bp and bm are
coefficients that determine the strength and direction of vertical transmission from fathers and
mothers respectively. The phenotypes of the mother and father also depend on the phenotypes
of their parents, and so on. The phenotype distribution under vertical transmission reaches an
equilibrium provided that bp and bm are not too large[13].

To simulate a phenotype affected by vertical transmission at equilibrium, we first simulated
direct genetic effects from a Gaussian distribution for 1,500 randomly selected SNPs, and
we scaled the effects so that the heritability (without vertical transmission) was 50%. We
simulated the first offspring generation by randomly pairing individuals in the first generation
into 50,000 parent pairs and simulated offspring by simulating meiosis as above. We simulated
the phenotypes of the first offspring generation using the following formula:

Yij =
L∑
l=1

δlgijl + (1/4)(Yp(i) + Ym(i)) + εij, (220)

where the direct effects were the same as in the base generation. We iterated this process for 20
generations, reaching an approximate equilibrium where the heritability was 32.7%. To simulate
vertical transmission with assortative mating[14], we followed the same procedure, except we
followed the procedure outlined above for the phenotype with assortative mating to create
parent pairs whose phenotypic correlation was 0.5. The heritability in the base generation was
50% and declined to 29% in the final generation even though the variance due to direct genetic
effects increased by 59%.

12.2.3 Simulating population stratification

We simulated a separate population with a phenotype influenced by direct genetic effects and
population stratification. To simulate population structure that reflects the geographic struc-
ture in the UKB sample, we divided the sample up by the center they were assessed at (19
centers in total), and we randomly paired individuals into parent-pairs within each assessment
center, generating two full sibling offspring for each parent-pair as above. We then combined
the simulated data from all of the centers. To simulate a phenotype affected by population
stratification, we simulated direct effects for 1,500 randomly selected SNPs, scaled so that they
explained 50% of the phenotypic variance, and we simulated normally distributed ‘center effects’
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for each center, so that the mean phenotype differed between assessment centers. The ‘center
effects’ were scaled so that they explained 30% of the phenotypic variance in the combined
sample, with the remaining 20% of phenotypic variance due to Gaussian noise.
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A Equilibrium distribution of observed and imputed PGIs

A.1 Equilibrium variance of PGI

We compute the variance of the PGI at equilibrium in terms of r and the variance of the PGI
in a random mating population, V0:

V0 = Lw22f(1− f). (221)

The variance at equilibrium is:

Var(PGIij) = w2

(
L∑
l=1

Var(gijl) +
L∑
l 6=k

Cov(gijl, gijk)

)
; (222)

= w2 [L2f(1− f)(1 +m) + 4L(L− 1)f(1− f)m] ; (223)

= V0 [1 +m+ 2(L− 1)m] ; (224)

= V0[1 + (2L− 1)m]; (225)

=
V0

1− ram + ram/2L
; (226)

where we have substituted in the equilibrium value of m (Equation 183) and simplified to reach
this result.

We therefore have that for large L,

Var(PGIij) ≈
V0

1− ram
, (227)

which agrees with classic results for the inflation of the genetic variance at equilibrium due to
assortative mating[5].

A.2 Equilibrium variance of parental PGI

We define PGIpar(i) = PGIm(i) + PGIp(i). Therefore,

Var(PGIpar(i)) = 2Var(PGIm(i)) + 2Cov(PGIm(i),PGIp(i)). (228)
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At equilibrium, the variance of the PGI does not change from parents to offspring. Therefore,

Var(PGIpar(i)) = 2Var(PGIij)(1 + ram); (229)

= 2
1 + ram

1− ram + ram/2L
V0; (230)

≈ 2
1 + ram
1− ram

V0, for large L. (231)

A.3 Equilibrium covariance between offspring and parental PGI

Since offspring and parents are symmetrically related,

Cov(PGIij,PGIpar(i)) = 2Cov(PGIij,PGIm(i)). (232)

We can derive that Corr(PGIij,PGIm(i)) = 1+ram
2

. Therefore,

Cov(PGIij,PGIm(i)) =
1 + ram

2(1− ram + ram/2L)
V0, (233)

and therefore

Cov(PGIij,PGIpar(i)) =
1 + ram

1− ram + ram/2L
V0. (234)

≈ 1 + ram
1− ram

V0, for large L. (235)

A.4 Equilibrium variance of imputed parental PGI

We now compute the variance of the imputed parental PGI:

Var( ˆPGIpar(i)) = w2

[
L∑
l=1

Var(ĝpar(i)l) +
L∑
l 6=k

Cov(ĝpar(i)l, ĝpar(i)k)

]
(236)

We compute Var(ĝpar(i)l) separately for each IBD state. If IBDl = 0, then ĝpar(i)l = gm(i)l +
gp(i)l, and thus

Var(ĝpar(i)l) = 2Var(gm(i)l) + 2Cov(gm(i)l, gp(i)l) (237)

= 4f(1− f)(1 +m) + 8mf(1− f) (238)

= 4f(1− f)(1 + 3m). (239)

If IBDl = 2, then ĝpar(i)l = gi1l + 2f , and thus Var(ĝpar(i)l) = 2f(1 − f)(1 + m). If we are in
IBD state 1, then ĝpar(i)l = gi1l + gki2l + f , where gki2l is the allele in sibling 2 not IBD with the
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alleles in sibling 1. Therefore,

Var(ĝpar(i)l) = Var(gi1l) + Var(gki2l) + 2Cov(gi1l, g
k
i2l) (240)

= 2f(1− f)(1 +m) + f(1− f) + 4mf(1− f) (241)

= 3f(1− f)(1 + 2m). (242)

Therefore, we have that

Var(ĝpar(i)l) =


4f(1− f)(1 + 3m), if IBDl = 0

3f(1− f)(1 + 2m), if IBDl = 1

2f(1− f)(1 +m). if IBDl = 2.

(243)

Since the expectation of ĝpar(i)l does not depend upon the IBD state, we have that

Var(ĝpar(i)l) = f(1− f)[P(IBDl = 0)4(1 + 3m) + P(IBDl = 1)3(1 + 2m) + P(IBDl = 2)2(1 +m)]
(244)

= 3f(1− f)[1 + (13/6)m]. (245)

We now consider the covariance for distinct loci l 6= k. Since the loci segregate indepen-
dently, P(IBDl = x, IBDk = y) = P(IBDl = x)P(IBDk = y). We can therefore compute the
covariance by computing the covariance conditional on IBDl = x, IBDk = y for x, y ∈ {0, 1, 2}.
Note that, if IBDl = x then ĝpar(i)l is comprised of 4− x sibling alleles. Therefore,

Cov(ĝpar(i)l, ĝpar(i)k|IBDl = x, IBDk = y) = (4− x)(4− y)mf(1− f), (246)

and therefore

Cov(ĝpar(i)l, ĝpar(i)k) = mf(1− f)
2∑

x=0

2∑
y=0

(4− x)(4− y)P(IBDl = x)P(IBDk = y) (247)

= mf(1− f)
2∑

x=0

(4− x)P(IBDl = x)
2∑
y=0

(4− y)P(IBDk = y) (248)

= 9mf(1− f), (249)

since
∑2

x=0(4− x)P(IBDl = x) = 3. Therefore, we have that

Var( ˆPGIpar(i)) = w2 [L3f(1− f)(1 + (13/6)m) + L(L− 1)9mf(1− f)] (250)

= w23Lf(1− f)[1 + (13/6)m+ (L− 1)3m] (251)

=
3

2
V0[1 + (3L− 5/6)m] (252)

=
3

2

1 + ram/2− ram/(12L)

1− ram + ram/(2L)
V0 (253)

≈ 3

2

1 + ram/2

1− ram
V0, for large L. (254)
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A.5 Equilibrium covariance between offspring and imputed parental
PGI

We now compute

Cov(PGIi1, ˆPGIpar(i)) = w2

[
L∑
l=1

Cov(gi1l, ĝpar(i)l) + 2
L∑
l=1

L∑
k=l+1

Cov(gi1l, ĝpar(i)k)

]
, (255)

since Cov(gi1l, ĝpar(i)k) = Cov(gi1k, ĝpar(i)l) because we are at equilibrium and all alleles have
equal frequency and all loci segregate independently. Following an argument similar to used
above, we have that

Cov(gi1l, ĝpar(i)l) =


2f(1− f)(1 +m), if IBDl = 2

2f(1− f)(1 + 2m), if IBDl = 1

2f(1− f)(1 + 3m), if IBDl = 0.

(256)

Therefore, Cov(gi1l, ĝpar(i)l) = 2f(1− f)(1 + 2m). For k 6= l, we have

Cov(gi1l, ĝpar(i)k) =


4f(1− f)m, if IBDl = 2

6f(1− f)m, if IBDl = 1

8f(1− f)m, if IBDl = 0.

(257)

Therefore, Cov(gi1l, ĝpar(i)k) = 6mf(1− f). We therefore have that

Cov(PGIi1, ˆPGIpar(i)) = w2 [2Lf(1− f)(1 + 2m) + 6L(L− 1)mf(1− f)] ; (258)

= V0[1 + 2m+ 3(L− 1)m]; (259)

= V0[1 + (3L− 1)m]; (260)

=
1 + ram/2

1− ram + ram/(2L)
V0; (261)

≈ 1 + ram/2

1− ram
V0, for large L. (262)

A.6 Equilibrium covariance between imputed and observed parental
PGI

We now compute

Cov(PGIpar(i), ˆPGIpar(i)) = w2

[
L∑
l=1

Cov(gpar(i)l, ĝpar(i)l) + 2
L∑
l=1

L∑
k=l+1

Cov(gpar(i)l, ĝpar(i)k)

]
,

(263)
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since Cov(gpar(i)l, ĝpar(i)k) = Cov(gpar(i)k, ĝpar(i)l) because we are at equilibrium and all alleles
have equal frequency and all loci segregate independently. Following an argument similar to
used above, we have that

Cov(gpar(i)l, ĝpar(i)l) =


2f(1− f)(1 + 3m), if IBDl = 2

3f(1− f)(1 + 3m), if IBDl = 1

4f(1− f)(1 + 3m), if IBDl = 0.

(264)

Therefore, we have that Cov(gpar(i)l, ĝpar(i)l) = 3f(1− f)(1 + 3m). For l 6= k, we have that

Cov(gpar(i)l, ĝpar(i)k) =


16f(1− f)m, if IBDl = 0

12f(1− f)m, if IBDl = 1

8f(1− f)m, if IBDl = 2.

(265)

Therefore, we have that Cov(gpar(i)l, ĝpar(i)k) = 12f(1− f)m. This gives

Cov(PGIpar(i), ˆPGIpar(i)) = w2 [L3f(1− f)(1 + 3m) + 12L(L− 1)f(1− f)m] ; (266)

=
3

2
V0[1 + 3m+ 4(L− 1)m]; (267)

=
3

2
V0[1 + (4L− 1)m]; (268)

=
3

2

1 + ram
1− ram + (ram/2L)

V0; (269)

≈ 3

2

1 + ram
1− ram

V0, for large L. (270)

B Imputation from one parent and multiple offspring

Here we give the probabilities and expectations of the missing father’s genotype conditional on
observing the mother and two sibling offspring. Here, we do not assume we can infer which
allele is shared when pairs are IBD1 and both heterozygous, so these tables are appropriate for
imputation with un-phased data. We generated the tables using an automated application of
Bayes’ Rule.

B.1 With IBD = 0

gp(i) + gm(i) = (gi1 + gi2) ⇒ gp(i) = (gi1 + gi2)− gm(i) (271)
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B.2 With IBD = 1

{gp(i), gm(i)} gi1, gi2 P (gi1, gi2|gm(i), gp(i), IBD = 1)

[0, 0] [0, 0] 1

[0, 1] [0, 0] 0.25
[0, 1] 0.5
[1, 1] 0.25

[0, 2] [1, 1] 1

[1, 1] [0, 1] 0.5
[1, 2] 0.5

[1, 2] [1, 1] 0.25
[1, 2] 0.5
[2, 2] 0.25

[2, 2] [2, 2] 1
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gp(i) gm(i) gi1, gi2 P (gp(i)|gm(i), gi1, gi2, IBD = 1)

0 0 [0, 0] 1∗(1−f)2

1∗(1−f)2+0.25∗2f(1−f)

1 0 [0, 0] 0.25∗2f(1−f)
1∗(1−f)2+0.25∗2f(1−f)

2 0 [0, 0] 0

0 0 [1, 0] 0

1 0 [1, 0] 1

2 0 [1, 0] 0

0 0 [0, 2] 0

1 0 [0, 2] 0

2 0 [0, 2] 0

0 0 [1, 2] 0

1 0 [1, 2] 0

2 0 [1, 2] 0

0 0 [2, 2] 0

1 0 [2, 2] 0

2 0 [2, 2] 0

0 1 [0, 0] 1

1 1 [0, 0] 0

2 1 [0, 0] 0

0 1 [1, 0] 0.5∗(1−f)2

0.5∗(1−f)2+0.5∗2f(1−f)

1 1 [1, 0] 0.5∗2f(1−f)
0.5∗(1−f)2+0.5∗2f(1−f)

2 1 [1, 0] 0

0 1 [0, 2] 0

1 1 [0, 2] 0

2 1 [0, 2] 0

0 1 [1, 2] 0

1 1 [1, 2] 0.5∗2f(1−f)
0.5∗2f(1−f)+0.5∗f2

2 1 [1, 2] 0.5∗f2
0.5∗2f(1−f)+0.5∗f2

0 1 [2, 2] 0

1 1 [2, 2] 0

2 1 [2, 2] 1

0 2 [0, 0] 0

1 2 [0, 0] 0

2 2 [0, 0] 0

0 2 [1, 0] 0

1 2 [1, 0] 0

2 2 [1, 0] 0

0 2 [0, 2] 0

1 2 [0, 2] 0

2 2 [0, 2] 0

0 2 [1, 2] 0

1 2 [1, 2] 1

2 2 [1, 2] 0

0 2 [2, 2] 0

1 2 [2, 2] 0.25∗2f(1−f)
0.25∗2f(1−f)+1∗f2

2 2 [2, 2] 1∗f2
0.25∗2f(1−f)+1∗f2
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gm(i) gi1, gi2 E[gp(i)|gm(i), gi1, gi2]

0 [0, 2] 0

0 [0] 0.25∗2f(1−f)
1∗(1−f)2+0.25∗2f(1−f)

∗ 1

0 [1, 0] 1 ∗ 1

0 [1, 2] 0

0 [1] 0.25∗2f(1−f)
0.25∗2f(1−f)+1∗f2 ∗ 1 + 1∗f2

0.25∗2f(1−f)+1∗f2 ∗ 2

0 [2] 0

1 [0, 2] 0

1 [0] 0

1 [1, 0] 0.5∗2f(1−f)
0.5∗(1−f)2+0.5∗2f(1−f)

∗ 1

1 [1, 2] 0.5∗2f(1−f)
0.5∗2f(1−f)+0.5∗f2 ∗ 1 + 0.5∗f2

0.5∗2f(1−f)+0.5∗f2 ∗ 2

1 [1] 0.25∗f2
0.25∗(1−f)2+0.25∗f2 ∗ 2

1 [2] 1 ∗ 2

2 [0, 2] 0

2 [0] 0

2 [1, 0] 0

2 [1, 2] 1 ∗ 1

2 [1] 0.25∗2f(1−f)
1∗(1−f)2+0.25∗2f(1−f)

∗ 1

2 [2] 0.25∗2f(1−f)
0.25∗2f(1−f)+1∗f2 ∗ 1 + 1∗f2

0.25∗2f(1−f)+1∗f2 ∗ 2

B.3 With IBD = 2

{gm(i), gp(i)} gi1, gi2 P (gi1, gi2|gm(i), gp(i), IBD = 2)

[0,0] 0 1

[0,1] 0 0.5

[0,1] 1 0.5

[0,2] 1 1

[1,1] 0 0.25

[1,1] 1 0.5

[1,1] 2 0.25

[1,2] 1 0.5

[1,2] 2 0.5

[2,2] 2 1
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gp(i) gm(i) gi1, gi2 P (gp(i)|gm(i), gi1, gi2, IBD = 2)

0 0 0 1∗(1−f)2

1∗(1−f)2+0.5∗2f(1−f)

1 0 0 0.5∗2f(1−f)
1∗(1−f)2+0.5∗2f(1−f)

2 0 0 0
0 0 1 0

1 0 1 0.5∗2f(1−f)
0.5∗2f(1−f)+1∗f2

2 0 1 1∗f2
0.5∗2f(1−f)+1∗f2

0 0 2 0
1 0 2 0
2 0 2 0

0 1 0 0.5∗(1−f)2

0.5∗(1−f)2+0.25∗2f(1−f)

1 1 0 0.25∗2f(1−f)
0.5∗(1−f)2+0.25∗2f(1−f)

2 1 0 0

0 1 1 0.5∗(1−f)2

0.5∗(1−f)2+0.5∗2f(1−f)+0.5∗f2

1 1 1 0.5∗2f(1−f)
0.5∗(1−f)2+0.5∗2f(1−f)+0.5∗f2

2 1 1 0.5∗f2
0.5∗(1−f)2+0.5∗2f(1−f)+0.5∗f2

0 1 2 0

1 1 2 0.25∗2f(1−f)
0.25∗2f(1−f)+0.5∗f2

2 1 2 0.5∗f2
0.25∗2f(1−f)+0.5∗f2

0 2 0 0
1 2 0 0
2 2 0 0

0 2 1 1∗(1−f)2

1∗(1−f)2+0.5∗2f(1−f)

1 2 1 0.5∗2f(1−f)
1∗(1−f)2+0.5∗2f(1−f)

2 2 1 0
0 2 2 0

1 2 2 0.5∗2f(1−f)
0.5∗2f(1−f)+1∗f2

2 2 2 1∗f2
0.5∗2f(1−f)+1∗f2
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gm(i) gi1, gi2 E[gp(i)|gm(i), gi1, gi2, IBD = 2]

0 0 0.5∗2f(1−f)
1∗(1−f)2+0.5∗2f(1−f)

∗ 1

0 1 0.5∗2f(1−f)
0.5∗2f(1−f)+1∗f2 ∗ 1 + 1∗f2

0.5∗2f(1−f)+1∗f2 ∗ 2

0 2 0

1 0 0.25∗2f(1−f)
0.5∗(1−f)2+0.25∗2f(1−f)

∗ 1

1 1 0.5∗2f(1−f)
0.5∗(1−f)2+0.5∗2f(1−f)+0.5∗f2 ∗ 1 + 0.5∗f2

0.5∗(1−f)2+0.5∗2f(1−f)+0.5∗f2 ∗ 2

1 2 0.25∗2f(1−f)
0.25∗2f(1−f)+0.5∗f2 ∗ 1 + 0.5∗f2

0.25∗2f(1−f)+0.5∗f2 ∗ 2

2 0 0

2 1 0.5∗2f(1−f)
1∗(1−f)2+0.5∗2f(1−f)

∗ 1

2 2 0.5∗2f(1−f)
0.5∗2f(1−f)+1∗f2 ∗ 1 + 1∗f2

0.5∗2f(1−f)+1∗f2 ∗ 2

C Imputation without IBD

If we find a genotype-IBD state that is impossible given the laws of Mendelian inheritance (for
example, two siblings with genotypes 0 and 2 and IBD state 2) we assume that there is an error
in the IBD inference, and we proceed to impute the missing parental genotypes without using
IBD information.

For imputation of parents from a set of siblings, we compute the probabilities of the parents’
genotypes given the siblings’ genotypes (gi1, gi2,...):

P (gp(i), gm(i)|gi1, gi2, ...) =
P (gi1, gi2, ...|gp(i), gm(i))

P (gi1, gi2, ...)
P (gp(i), gm(i)) (272)

=

∏
j P (gij|gp(i), gm(i))P (gp(i), gm(i))∑

gp(i)

∑
gm(i)

∏
j P (gij|gp(i), gm(i))P (gp(i), gm(i))

. (273)

For imputation of a parent (taken to be the father here) given the genotypes of the mother and
the offspring, we compute the probabilities of the missing father’s genotype:

P (gp(i)|gm(i), gi1, gi2, ...) =
P (gp(i), gm(i))

∏
gij
P (gij|gp(i), gm(i))∑

gp(i)
P (gp(i), gm(i))

∏
gij
P (gij|gp(i), gm(i))

(274)

Assuming random-mating, P (gp(i), gm(i)) =
(

2
gp(i)

)
f gp(i)(1−f)2−gp(i)

(
2

gm(i)

)
f gm(i)(1−f)2−gm(i) . The

only remaining term to compute is P (gij|gp(i), gm(i)), which can be computed using Mendelian
Laws of Inheritance. The imputed values are then the expectations of the parental genotypes
over these conditional probability distributions.
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D Linear Imputation

Unbiased linear imputations of parental genotypes can be derived from the variance-covariance
matrix of the sibling and parental genotypes:

Var

Xi =


gi1
gi2
gp(i)
gm(i)


 = 2f(1− f)


1 0.5 0.5 0.5

0.5 1 0.5 0.5
0.5 0.5 1 0
0.5 0.5 0 1

 . (275)

If we partition the variables into two groups, Xi1 andXi2, with the covariance matrix partitioned
into

Var

([
Xi1

Xi2

])
=

[
Σ11 Σ12

ΣT
12 Σ22

]
(276)

then we can apply the formula for E[X2|X1] as if they are jointly multivariate Gaussian random
variables to derive an unbiased imputation of X2 that is a linear function of X1:

E[X2|X1] = E[X2] + ΣT
12Σ−1

11 (X1 − E[X1]). (277)

D.1 Imputation from parent-offspring pairs

Consider imputing gp(i) by a linear function of gi1 and gm(i):

ĝp(i) =
4f + 2gi1 − gm(i)

3
, (278)

which has variance 2
3
f(1− f), which is 1/3 of the variance of gp(i).

D.2 Imputation from sibling pairs

For gpar(i) = gp(i) + gm(i), we have that

Var

 gi1
gi2
gpar(i)

 = 2f(1− f)

 1 0.5 1
0.5 1 1
1 1 2

 . (279)

From this, we impute gpar(i) as a linear function of gi1 and gi2:

ĝpar(i) =
4f + 2(gi1 + gi2)

3
, (280)

which has variance 8
3
f(1− f), which is 2/3 of the variance of gpar(i).
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