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Abstract

Both direct genetic effects (effects of alleles in an individual on that individual) and indirect genetic effects — effects of alleles in
an individual (e.g. parents) on another individual (e.g. offspring) — can contribute to phenotypic variation and genotype-
phenotype associations. Here, we consider a phenotype affected by direct and parental indirect genetic effects under
assortative mating at equilibrium. We generalize classical theory to derive a decomposition of the equilibrium phenotypic
variance in terms of direct and indirect genetic effect components. We extend this theory to show that popular methods for
estimating indirect genetic effects or ‘genetic nurture’ through analysis of parental and offspring polygenic predictors (called
polygenic indices or scores — PGls or PGSs) are substantially biased by assortative mating. We propose an improved method for
estimating indirect genetic effects while accounting for assortative mating that can also correct heritability estimates for bias
due to assortative mating. We validate our method in simulations and apply it to PGls for height and educational attainment
(EA), estimating that the equilibrium heritability of height is 0.699 (S.E. = 0.075) and finding no evidence for indirect genetic
effects on height. We estimate a very high correlation between parents’ underlying genetic components for EA, 0.755 (S.E. =
0.035), which is inconsistent with twin based estimates of the heritability of EA, possibly due to confounding in the EA PGI
and/or in twin studies. We implement our method in the software package snipar, enabling researchers to apply the method to
data including observed and/or imputed parental genotypes. We provide a theoretical framework for understanding the results
of PGl analyses and a practical methodology for estimating heritability and indirect genetic effects while accounting for
assortative mating.

Introduction

Since Galton’s 1886 work on the relationship between parent and offspring height?, explaining
resemblance between relatives has been central to the biometrical approach to heredity. R.A.
Fisher's foundational 1918 paper, The correlation between relatives on the supposition of
Mendelian inheritance?, unified the biometrical approach to heredity — whose intellectual
lineage traces back to Galton — with Mendelian inheritance3. Fisher’s primary concern in this
work was to show how Mendelian genetics, which describes the inheritance of discrete entities
called alleles, could explain resemblance between relatives for continuous phenotypes like
height. Fisher showed that, when alleles have additive effects, and there are no other sources of
correlation between relatives, the phenotypic correlations between relatives are determined by
the heritability of the phenotype, h?, and their coefficient of relatedness — provided that the
population is infinite and mating randomly?4-°,

After this groundbreaking result, Fisher’s paper goes on to address the more difficult problem of
assortative mating (AM) — non-random mating leading to phenotypic correlation (usually
assumed to be positive) between mothers and fathers, and therefore correlations between
maternally and paternally inherited alleles. Fisher showed that AM induces a correlation
between maternal and paternal genetic components, which increases the variance of the
genetic component in the subsequent generation. The correlations between relatives’ genetic
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components and the variance of the genetic component increase towards equilibrium values as
this process continues, requiring only a handful of generations to reach an approximate
equilibrium?7=°. Fisher derived the phenotypic correlations between relatives at
equilibrium?#®7 which Greg Clark showed can be closely fit to correlations between relatives’
social status in England in a dataset spanning 1600-2022 (ref!?) — although these data do not
rule out environmental effects of parents on offspring.

Building on Fisher’s work, Crow and Felsenstein gave an alternative derivation of the increase in
genetic variance due to AM?, also detailed in Chapter 4 of Crow and Kimura’s textbook’. They
showed that, for a phenotype affected by many genetic variants spread across the genome, the
genetic variance is inflated by a factor of 1/(1 — 75) at equilibrium, where 75 is the correlation
between maternal and paternal genetic components. Their method does not assume a
particular model of AM, just that it has reached an equilibrium. The most common model of
assortative mating states that all the correlation between parents’ genetic components is
explained by matching on the observed phenotype, a model often called primary phenotypic
assortment'#13, Assuming primary phenotypic assortment, and that the regression of genetic
component onto phenotype is linear®, it can be shown that ry = hgqry, where hgq is the
equilibrium heritability, and 7, is the correlation between parents’ phenotypes®”411,

The theory described above applies to phenotypes determined by additive effects of alleles in
an individual on that individual, called direct genetic effects (DGEs), and random environmental
effects/noise. In the 1970s, Cavalli-Sforza and Feldman developed models where, in addition to
genetic transmission from parents to offspring, parental phenotypes affect the offspring's
phenotype through an environmental process called “vertical transmission” or “cultural
transmission”**1>, The models of Cavalli-Sforza and Feldman were influential in the creation of
the field of gene-culture coevolution®®. In 1978, Cloninger, Rice, and Reich extended the models
of Cavalli-Sforza and Feldman to include transmission of a general “cultural value” (possibly
distinct from the offspring phenotype) from parent to offspring!’. They extended this model to
include AM due to matching on the phenotype, giving equilibrium results!®. Their model makes
predictions about the correlations between relatives!®, and versions of their model have been
used to analyse lifespan using a large pedigree from Ancestry.com®® and educational attainment
(EA) using Swedish register data?’. However, these analyses — like Clark’s analysis of social
status in England'® — are unable to separate genetic transmission (heritability) from cultural
transmission without making assumptions that are unlikely to be true.

Building on these vertical/cultural transmission models, behaviour genetics researchers
extended the classical twin design — based on estimation of heritability by comparison of
monozygotic (MZ) and dizygotic (DZ) twin pairs — to ‘extended twin and family designs’ (ETFDs)
that also model the phenotypes of parents and other relatives of DZ and MZ twins. These ETFDs
can model vertical transmission from parents, in addition to heritability!2. The ‘stealth model’
from Truett et al. in 19942! enabled modelling of assortative mating due to matching on the
observed phenotype. Keller et al.22 introduced the ‘cascade model’ in 2009, a generalisation of
the stealth model that allows the matching to take place on a latent, unobserved phenotype.
Although ETFDs can separately identify genetic and cultural transmission from parents while



accounting for assortative mating, obtaining precise estimates of the parameters of these
models can be difficult due to limited samples of twin pairs with phenotype data on their
relatives?2.

While empirical analyses of genotype-phenotype data have produced estimates of some
important parameters that relate to vertical transmission models — including heritability
correlations induced by assortative mating!®28-3°, and indirect genetic effects (IGEs, also called
'genetic nurture')3133 — robust estimation of vertical transmission model parameters remains
challenging??33,
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IGEs are causal effects of alleles in one individual on another individual’s phenotype, mediated
through the environment. When IGEs come from genetically related individuals, they contribute
to the genotype-phenotype associations estimated in genome-wide association studies (GWASs)
and lead to bias in heritability estimates from many methods?®313435 This manuscript focuses
on parental IGEs, effects of alleles in parents on their offspring through the rearing
environment, but IGEs could come from other classes of relatives, such as siblings3343¢, or from
unrelated individuals. Vertical transmission models induce parental IGEs when the parental
phenotype that affects offspring through the environment is heritable: the genetic variants that
affect the parental phenotype will have IGEs on the offspring phenotype3*3*. There is evidence
that parental IGEs are important for educational outcomes3¥32, but this evidence has been
contested as confounded with the influence of population stratification and AM3437-3%,

AM generates bias in most methods for estimating heritability?>4°, including: classical twin
studies?34142; methods based on realized relatedness between relatives, such as siblings?*>?* and
more distant relatives, as in Relatedness Disequilibrium Regression, or RDR?32%; LD-score
regression, or LDSC*%; and genomic relatedness-matrix restricted maximum likelihood, or
GREML*®, While techniques for adjusting for the bias due to AM have been proposed?3, they
typically assume that all the correlation between maternal and paternal genetic components is
explained by matching on the phenotype. This model has been shown to be inaccurate for EA,
where the correlation between maternal and paternal genetic predictors of EA is far higher than
can be explained by matching on the phenotype!®2%43, Factors that may contribute to maternal
and paternal genetic predictors (or components) becoming more correlated than expected due
to matching on the observed phenotype include: matching on a correlated phenotype that is
more highly correlated with the underlying genetic predictor/component than the observed
phenotype!?1330 and matching based on the phenotypes of the mate’s family members —
and/or ancestry — in addition to the phenotype of the mate. It would therefore be desirable to
have a technique for adjusting for bias due to AM that does not assume the correlation
between parents’ genetic components is entirely due to matching on the phenotype.

Most studies examining evidence for IGEs have proceeded by correlating parental alleles not
transmitted to offspring with offspring phenotypes3'32. While this correlation captures IGEs, it
also partly captures the genetic component of the phenotype with which the non-transmitted
alleles are correlated due to AM31:33:3839 Kong et al.3! attempted to adjust for this bias due to
AM, concluding the bias was small. However, they did not measure the uncertainty in their



adjustment, and the adjustment relied upon assuming that there had been only one generation
of AM and that DGEs and IGEs are perfectly correlated. Balbona et al. proposed a structural
equation model (SEM) to adjust for the bias due to AM in estimates of IGEs33, but this method
assumes correlations between parents' genetic components are due entirely to matching on the
phenotype. The method of Balbona et al. additionally requires observations on the parental
phenotype through which IGEs/vertical transmission operate, or knowledge of the true
heritability of the phenotype and an assumption that the parental phenotype through which
IGEs/vertical transmission operates is the same as the offspring phenotype.

In this paper, we generalize Crow and Felsenstein’s!! approach (which considered only DGEs) to
also include parental IGEs. We derive a decomposition of the equilibrium phenotypic variance in
terms of DGE and IGE components that does not assume a particular model of assortative
mating. We connect our results to estimation of heritability using random-variation in realized
relatedness due to Mendelian segregations?*2¢, deriving the bias in these methods due to AM.
We extend our approach to derive results on analysis of polygenic predictors (called polygenic
indices or PGIs — also known as polygenic scores). We show how to assess evidence for IGEs
from PGI analysis when there is AM and how to adjust for bias in heritability estimates due to
AM. We apply these results to PGIs for height and EA, and we correct for the bias in the height
heritability estimate due to AM.

Results

Phenotype model

We model the phenotype of sibling j in family i as the result of DGEs, IGEs from parents, and a
residual environment/noise term:

Yii = Aij + Mpy + mapy + €ij)
Equation 1
where
L
A = Z 6:(gij1 — 2f)
=1
Equation 2

is the DGE component; & is the direct effect of variant [; g;j; is the genotype of sibling j in
family i at variant [; and variants are assumed to be bi-allelic with frequency f;, constant across
generations, so that E[gl-jl] = 2f;. The paternal and maternal IGE components are

Moy = Lie1 M(Gpay — 2/1) and Ny = Xicy M(Gmey — 2£0);

where 7, is the (average) parental indirect genetic effect of variant [; and g,;y; and gpy; are,
respectively, the genotypes of father and mother in family i at variant [. We model only the
average parental IGE here, as, for the results in this manuscript, differences between paternal



and maternal IGEs can be subsumed into the residual and ignored (Supplementary Note Section
3.4).

AM induces a correlation between parents’ DGE components, which we define to be:
Apiiy = Xiz161(Gpcy — 2f1), and Ay = Xizy 81(Gmeiyt — 2f0)-
We give a glossary of terms used in the paper after the Discussion.

Equilibrium phenotypic variance

We decompose the equilibrium phenotypic variance in terms of the random mating variance
decomposition and the equilibrium correlations between parents’ DGE and IGE components.
Figure 1 shows the notation for the equilibrium correlations: the within-parent (or cis-parental)
correlation, r§n, between DGE and IGE components are the same for mothers and fathers
because the DGEs (6;) and (average) IGEs (17;) do not depend on the parent; similarly for the
cross-parent (or trans-parental) correlation, rgn. To make the decomposition tractable, we
assume that the L causal variants segregate independently, implying they would be
uncorrelated in a random mating population.
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Figure 1. Diagram of correlations between parents’ direct genetic effect (DGE) and indirect genetic effect (IGE) components.
Apiy and Ay are the paternal and maternal DGE components with correlation 7s. 0,y and 1,y are the paternal and
maternal IGE components with correlation r,,. The within-parent (or cis-parental) correlation between DGE and IGE components
is r(gcn, for which we use a superscript ‘c’ to denote ‘cis-parental’. The cross-parent (or trans-parental) correlation between DGE
and IGE components is rgn, for which we use a superscript ‘T’ to denote ‘trans-parental’.

The random-mating variance decomposition is the same as given in Young et al. 2018, who
derived it for the RDR method for estimating heritability3!:

Var(Y;) = vy + Veuy + Cge + 0
Equation 3
where v, = Var(Aij) = 2Y0_, 62fi(1 — f,) is the random-mating genetic variance; Veng =
Var(npay + Mmay) = 4 X107 fi(1 — f;) is the random-mating variance due to (average)
parental IGEs; and ¢4, = ZCOV(Aij,T]p(i) + nm(i)) =4Yl_, 6 fi(1 — f,) is the random-mating
variance due to covariance between DGEs and parental IGEs; and 62 = Var(e;;).



In Supplementary Note Section 3, we show that, for AM at equilibrium and in the limitas L —
(0]

7
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We define the equilibrium variance components:
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and the equilibrium heritability, h, = v%q.
y

The equilibrium phenotypic variance due to covariance between DGE and IGE components, c;‘g,

will be non-zero when 75, + 75, # 0. This is true even when DGEs and IGEs are uncorrelated but
AM induces a correlation between DGE and IGE components (75, + 75, # 0). In other words,

AM induces a correlation between the DGE and IGE components even if there would be none
under random mating.

In theory, it would be possible to estimate this variance decomposition given estimates of the
random-mating variance components and correlations between parents’ DGE and IGE
components (Figure 1). In Supplementary Note Section 3.4, we show that differences between
maternal and paternal IGEs do not alter the equilibrium variance decomposition: the variance
component due to parental IGE asymmetry is absorbed into the residual and is unchanged by
AM. Furthermore, since proband PGI and average parental PGls are uncorrelated with the
component due to parental IGE asymmetry34, such asymmetries do not affect the PGl analysis
results contained in this manuscript.

If cje # 0 (DGE and IGE components are correlated under random mating) then the equilibrium
variance decomposition can be expressed in terms of ¢, (Supplementary Note Section 3.3.1):

v 1+ Tsy + s,
Var(y) = g ity T T

2
Vo~ Che + 0F.
— — g c _..T "ge €
1-r5 1-n sy — Ty
Equation 4

In Supplementary Note Section 3.3.2, we show that

(4 T T
r(sn + T5,7 _ 21’577
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where rg)n # 0 is the random-mating correlation between DGE and IGE components, which
equals the genome-wide correlation between standardized DGEs and IGEs. This shows that AM
will increase the magnitude of the variance due to covariance between DGE and IGE

TT
components provided that % > 0.
on

If we assume primary phenotypic assortment, then it can be shown that (Supplementary Note
Section 3.5):

cel cel
e e

rs =hZr | 1+-2%(1+-2

1) eq'Y veq 4veq
g g

Thus, the correlation between parents’ DGE components can differ from rg = hgqry (the classic
result for primary phenotypic assortment’) when there is (potentially AM induced) correlation
between DGE and IGE components. When DGE and IGE components are positively correlated,
the equilibrium correlation between parents’ genetic components will thus be higher than
would be predicted using the classic result, 15 = hgqry, and consequently the AM induced
inflation of phenotypic variance due to DGEs would be larger.

Estimating heritability using realized relatedness

While siblings have a relatedness coefficient of % in expectation — based on the expected
proportions of the genome shared identical-by-descent (IBD) from each parent — there is
variation around this expectation due to random segregation of genetic material in the parents
during meiosis. The realized relatedness between siblings is computed from the proportions of
the genome shared IBD from each parent, and therefore captures the random variation in
relatedness around the expectation. In outbred samples, the realized relatedness between
siblings has an approximate normal distribution with mean close to 0.5 and a standard deviation
around 0.04 (ref?426), By examining how the phenotypic correlation between siblings changes
with realized relatedness, an estimate of heritability can be obtained that is robust to
population stratification?*2%. We call this method ‘sib-regression’.

Here we examine how realized relatedness affects the phenotypic correlation between siblings
in our model with DGEs, IGEs, and AM at equilibrium. In Supplementary Note Section 4, we
show that, for a sibling pair with phenotypes (V;;, Y;;) and realized relatedness R, jy,

_ eq eq eq

Cov(Yij, Yik) = YgRiji + 150y + Veig + Cge + Cov(e€j, €51)-

(This is the result for the limit as the effective number of independent loci contributing to the
DGE component goes to infinity. We give results for a finite number of loci in Supplementary
Note Section 4.) This shows that variation in realized relatedness gives information about the



random mating variance of the DGE component, not the equilibrium variance, because the
variation in realized relatedness is due to random segregation of genetic material in a family
where the correlations induced by AM are irrelevant.

Heritability can be estimated by a regression of Yl-le-k/v;q onto R;jj across sibling pairs —
where we have assumed the phenotypes have mean zero. The slope of this regression gives the
estimate of heritability. Assuming that the realized relatedness is uncorrelated with €;€;, —
which would be violated when there are IGEs between siblings?® — we show in Supplementary

def
Note Section 4 that the slope of the regression is h]% = vg/v;q, the random-mating variance of
the DGE component divided by the equilibrium phenotypic variance. The estimand h]% is smaller
than the equilibrium heritability, hgq, by a factor of (1 — r5). Thus, one could estimate hgq by
inflating estimates of h]% by a factor of 1/(1 — 75).
ved +Ceq+E[El‘jEl‘k]

The intercept of the regression is rshZ, + —2 gieq . This includes a term, 75hZ,, that will

y
be non-zero when the phenotype is heritable and there is AM, even in the absence of IGEs or

other environmental effects shared between siblings. This implies that, when there is AM, the
intercept will give an upward biased estimate of the proportion of phenotypic variance
explained by environmental effects shared between siblings?. To correct for the bias due to AM,

one could subtract an estimate of r5h§q = lr—‘ihf from the intercept of the regression.
-rs

Our theoretical results for AM at equilibrium agree with Kemper at al., who argued that sib-
regression estimates the random mating genetic variance divided by the phenotypic variance in
the present generation?3, which is the equilibrium phenotypic variance at equilibrium, as in our
model/derivation. Kemper et al. supported their argument with simulations of a single
generation of AM and a theoretical derivation that, although it reached the correct conclusion,
is invalid (Supplementary Note Section 4.2). Kemper et al. argued that RDR?®, which is a
generalization of sib-regression to all relative pair classes, also estimates hjzc. Our theoretical
results imply that this is true since RDR — like sib-regression — uses within-family variation in
realized relatedness to estimate heritability.

Although they do not use realized relatedness, classical twin studies based on MZ-DZ twin
comparisons have also been shown to estimate h]% under the ACE model when AM is at
equilbrium?3, It is trivial to show the same result holds in our model. This implies that
heritability estimates from the ACE twin model, from sib-regression, or from RDR can be
combined with estimates of 75 to estimate the equilibrium heritability.

In the following sections, we show how analysis of genetic predictors (called polygenic indices,
or PGls; also called polygenic scores, or PGS) can be used to estimate 75, to adjust heritability

estimates for bias due to AM, and to assess evidence for parental IGEs while accounting for AM.

Family-based polygenic index analysis




Building on Kong et al.3, many studies have examined both offspring and parental PGls as
predictors of offspring phenotypes33443, In the following sections, we show how to interpret
the results of these studies in our model.

A PGl is a weighted sum of genotypes (numbers of copies of alleles) across genetic variants:

L L
1
PGl;; = \/_Ez wi(giji — 2f1); v = Var (Z wi(giji — zfl)>i
=1 =1

where PGI;; is the PGl of sibling j in family i, and w, /v is the weight of variant [. If we set w;, =
6, for all loci, then PGI;; o A}, as defined in Equation 2. In this section, we assume the PGl has
been normalized to have variance 1, i.e. the un-standardized PGl has been divided by its
standard deviation, v/v, where v is its variance. Under random-mating,

p = waZfl(l — 5.
=1

We now define the paternal and maternal PGls using the same weights:

PGI ! ZL: ( 2f,); PGI Ly ( 2f)
p() = Wi\9piyt — 4J1); m@) = —z Wilm@) — 4J1)-
\/;l=1 ﬁl:l

As they use the same weights, the maternal and paternal PGls have the same variance as the
offspring PGls under random mating and under AM at equilibrium.

Given parental genotypes, offspring genotypes vary due to random segregations during meiosis
in the mother and father. Furthermore, Mendelian inheritance induces an important
relationship between parent and offspring PGls. Letting G represent the genotypes of the

par(i)
parents:
E[PGL;|Gpar(iy] = (PGlyiy + PGliniy)/2 = PGlLoaiy/2,
Equation 5
where PGl ;) = PGlp ;) + PGl . This result holds generally, whether there is AM or not.

The most common type of PGI analysis is a regression of phenotype onto PGl without
controlling for parental PGls (but potentially controlling for covariates, such as genetic principal
components):
Yij = BraiPGli; + €45,
Equation 6



where f is called the ‘population effect’ of the PGl as it reflects the overall association of the
PGI and phenotype in the population (after accounting for covariates).

Most of the evidence for parental IGEs has derived from fitting a version of the following
regression equation33243;

Yl] = 6PGIPGIij + aPGIPGIPar(i) + €
Equation 7

jr

where &pg is called the direct genetic effect of the PGI, and ap; is called the average non-
transmitted coefficient (NTC), as it reflects the correlation of offspring phenotype with the PGI
constructed from the parental alleles not transmitted to the offspring34. Often, apg; has been
interpreted as reflecting IGEs alone, which would be true under random-mating, but it can also
reflect population stratification and, as we detail below, AM343839_Since offspring PGl is
conditionally independent of environment given parental genotypes, and E[PGIi|Gpar(i)] =
PGl,,.;)/2 (Equation 5), &pg reflects DGEs of causal variants alone, and does not include IGEs

or other forms of gene-environment correlation, e.g. population stratification

31,34

PGl Wy Sral apGl Bra
v v
5 0o [Ve~g 0o [Ye~g
DGE 61 Ug r611 > /vg + r617 >
Average Parental 0 Veng Veng
IGE T Tony Vg 5 15V
Population 5 Vg +Cge/2 (Ve~g +Cge)/2 Jv F v, /2 +c
1 ~ ,
Effect Vg Verg/2+Cge | Vg + Verg/2 + Cge g s g€

Table 1. Expected regression coefficients for two-generation PGl analysis under random-mating. Direct effect (6pc1), average

non-transmitted coefficient (ap¢;), and population effect (Bp¢;) for standardized PGls with different weight vectors, specified by

the w; column, which gives the weight for variant  in the un-standardized PGI. Here, we give the regression coefficients for the
PGl standardized to have variance 1. The PGI coefficients are expressed in terms of the random-mating variance components

v“;g + ¢4.¢), Which is also the

variance estimated by GREML applied to all causal SNPs in a random mating population?®. These results are for idealized weight
vectors given by the true DGEs, &;, average parental IGEs, 1;, and population effects, 5, = 8; + 1;. These results are not valid
when weights are estimated with noise or bias — as would be the case for real world PGls computed from GWAS summary
statistics — or when there is non-random mating. A glossary of symbols is included after the Discussion.

(Equation 1). The variance explained by the population effect PGI under random mating is (v, +

In Supplementary Note Section 5, we show that, assuming random-mating,

1L=1 wifi2fi(1 = f)
VIl wi2fi(1-f)

Socs = Eawd2fA—f) . Lowm2fil=f)
- » UpGl —
VI wi2fi(1-f) VI wi2fi(1-f)

; ﬁPGI =

where ; = §; + ;. In Table 1, for certain special values of the weight vector w;, we give dpq,
apcp, and Bpg; in terms of the random-mating variance components?® (Equation 3), and the
random-mating correlation between DGE and IGE components, rg)n.

Two-generation analysis of the direct genetic effect PGI at equilibrium

10



We now give results for PGl analysis under AM at equilibrium. First, we give results for analyzing
the true DGE PG, as results for DGE PGls that do not capture all the heritability can be
expressed in terms of coefficients for the true DGE PGI. We define (Equation 2):

Ajj = Y 51(9171 - Zfz);

L
Aparpy = Z 8:(gpct + Gmen — 4f1) =By + Bmgiy-
=1

Consider analyzing this PGl in a two-generation regression model:

Yij = 8505 + asBpary T €ij-
Equation 8

In Supplementary Note Section 6, we show that, at equilibrium:

6 = 1 As = ﬁ — ng — (TISC?] + rgr)) (1 - T5)Ue~g
R TC vyt A +1s) 21—y
Equation 9

This shows that we expect the average NTC of the DGE PGl to be non-zero only when IGEs are
present and rg, + 75, # 0, which will almost surely be true when there is AM, even when DGEs

and IGEs are uncorrelated. To obtain equivalent results for the true DGE PGl standardized to

have variance 1, we multiply both 5 and a5 by ’v;q. Let @5 be the average NTC for the
standardized true DGE PGlI, then

2
c T eq
- TsntTs (1-rs)v, 2
2(“5)2 — 2veqa§ — ( n 71) e~g
9 (1+1s)2 (1+1y)

This implies that 2(&s)? gives a measure proportional to the variance explained by parental
IGEs, provided that racn + rgn # 0. In the random-mating case, this will be less than v,_, unless
rson = 1, i.e. unless the genome-wide correlation between DGEs and IGEs is 1. While this
captures part of the variance explained by parental IGEs, it does not capture the phenotypic
variance due to covariance between DGE and IGE components. In Supplementary Note Section
6.1, we show that the proportion of phenotypic variance explained by joint regression onto the
parental and offspring DGE PGIs (Equation 8) is:

Var(A;jj+aglpar(i
ar(Ay vgg par(®) _ (14201 +rs)as(1 + as))hZ,.

Equation 10

11



If there are no parental IGEs, or the IGE component is uncorrelated with the DGE component,
then as = 0, and the proportion of variance explained by parental and offspring DGE PGls
would be hgq. Thus, the contribution of parental IGEs to the variance explained by the parental
and offspring DGE PGls (due to both the IGE component and its covariance with the DGE
component) is

def Var(A;j+asAparci))
Unis = = e P — hZ, = 2(1 + r5)as(1 + as)hs,.
y

Equation 11

Thus, the contribution from parental IGEs is magnified when rs > 0, i.e. when (positive) AM is
present.

This shows that the true DGE PGI — which could be estimated from family-based GWAS3444 —
can be used to assess the contribution of parental IGEs to the phenotypic variance. However,
when the estimated DGE PGl does not capture all the heritability and there is assortative
mating, the situation is more complicated, and requires a different solution, as we outline
below.

Two-generation analysis of an incomplete direct genetic effect PGl at equilibrium

In real-world applications, we will never have access to the true DGE PGI. Even with unbiased
estimates of DGEs, sampling errors due to finite sample size*® mean that any real-world DGE PGl
will fail to capture all of the heritability. Differences in local linkage disequilibrium patterns
and/or DGEs between training data and target data3%4¢47 would further reduce the heritability
explained by a real-world PGI. If using population effect estimates from standard GWAS — as is
currently standard practice — bias due to IGEs and improperly controlled population
stratification®* mean that such PGls are unlikely to capture all of the heritability even as
sampling error approaches zero. Furthermore, incomplete genotyping and/or imperfect
imputation of rare variants and structural variants*~>° mean that not all relevant genetic
variation is captured by current PGls.

To accommodate the complexities of real-world applications as best we can, we develop theory
for a DGE PGl that explains a fraction, k, of the heritability in a random-mating population. The
model we use assumes that we include only a fraction, k, of the independently segregating
causal variants, which are assumed to have equal frequency and equal effect size, 6:

8 s 5 8 5 )
PGI; [ = \/T—kale(gijl —2f); PGL(;) = \/T—kZ;(il(gp(i)l —2f); PGL{; = \/T—kZéchl(gm(i)l = 2f).
We define the PGls such that they have been standardized to have variance 1 through division

by \/Vx, where v, = Var(6 Z{;Ll(gijl — 2f)), which is assumed to be the same for parent and
offspring PGls because we are assuming equilibrium.
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Although this simplified model is not realistic and does not capture all the possible ways a PGl
may capture only a fraction, k, of the heritability in a random-mating population, we show that
the results hold under more general conditions through simulations (below).

For the following sections, we assume we have a sample of families where we have observed
the phenotypes of the offspring, Y;;, along with the offspring and parental incomplete DGE PGls:

Sk Sk Sk
PGI;F, PGL,%,, PGI, ¥ .

DGE PGls to be

jr
We denote the correlation between maternal and paternal incomplete

1, = Corr (PGIS’(‘O, PGIZ‘(D)

Equation 12

We consider what we can learn from performing a two-generation PGl analysis using the
incomplete DGE PGI. Specifically, consider we have performed a regression of the standardized
offspring phenotype onto standardized offspring and parental PGls:

Y P B
—_— = 5PGI:kPGIi]’k + apGl:kPGIp:;r(i) + Eij'
v;q

Equation 13

and let &pgp. and @pgp.x be the resulting estimates of the direct effect, 8pg;.;, and average NTC,
apgr:x, Of the incomplete DGE PGI.

We also consider estimating the population effect of the incomplete DGE PGl, Bpg .k, by the
following regression:

Y 5
\/_%q = IBPGl:kPGIijk + €.
(%
y
Because Cov (PGIZk, PGIgz’:r(i)) = (1 + 1) at equilibrium, it is trivial to show that
COV(YU,pGIZk)

— = Broik = Spar + (1 + n)apgrx,
12
y

Equation 14

which gives a useful connection between the results of one and two-generation PGl analyses.

Impact of assortative mating on PGl analysis in the absence of indirect genetic effects

AM can induce statistical properties that can be confused with the influence of IGEs. In
Supplementary Note Section 7.3.1, we show that the fraction of phenotypic variance the
incomplete PGl explains at equilibrium in a model without IGEs is:

13



RZ, = Bioi = [1+ (1 — ks (1 + 1) 1khZ, > khi, whenrs > 0and k < 1.

In other words, AM inflates the R? between phenotype and PGl by a factor of 1 +

(1 —-k)rs(1 + ). As k — 1, the inflation tends to zero. This is because the inflation is due to
the correlation between the PGl and the DGE component that the PGl would be uncorrelated
with in a random-mating population but becomes correlated with due to AM: when k = 1,
there is no residual DGE component to be correlated with.

1.001
0.751
e}
& 050
o
0.251
0.00+
O No) ) \2) O
S & K A S

Fraction of heritability explained by PGI (random-mating), k

Figure 2. Impact of assortative mating on PGl analysis. We give results for the expected regression coefficients in one- and two-
generation PGl analysis (Equations 13 and 14) under assortative mating at equilibrium without indirect genetic effects. The y-
axis gives ratios: between the average NTC and direct effect, a; /6y, in blue; and between direct and population effects, p; =

61/ B, in red. We plot these ratios as a function of the fraction of heritability the PGl would explain in a random-mating
population, k, on the x-axis. As these ratios (Equations 15 and 17) also depend upon the correlation between parents’ direct

effect components, rs, we show the ratios as a function of k (x-axis) for both rs = 0.4 (solid lines) and rs = 0.2 (dashed lines). A

glossary of symbols is included after the Discussion.

The AM-induced correlation between the PGl and the DGE component the PGl would be
uncorrelated with in a random mating population affects results from two-generation PGl
analysis. Since Kong et al.3!, attention has been given to the ratio between direct and population
effects (6pg1/Prai) for PGls, since this measures how much apparent PGl effects ‘shrink’” when
estimated within-family*3>! — a statistical signature of IGEs. However, population stratification
and AM can also lead to shrinkage of PGl effects within-family33394352 'implying that IGEs
cannot be identified from ‘shrinkage’ of PGl effects within-family alone.
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In Supplementary Note Section 7.3, we show that, for a PGI that would explain a fraction k of
the heritability in a random mating population, this ratio is

6PGl:k
Pr = =1—(1—k)r5,
ﬁPGI:k
Equation 15

at equilibrium in the absence of IGEs (and no population stratification, which we do not include
in our model). This equation thus gives a baseline expectation for what ‘shrinkage’ to expect
based purely on AM. The equation shows that we could expect substantial shrinkage when k is
not close to 1, and 7y is substantially above O (Figure 2).

Consider analysing a single variant that explains a negligible amount of the heritability, then

pr = lim,_o(1 — (1 — k)rs) = 1 — r5. Versions of this result for a single variant has been given
before by several authors®%°2, The ratio 1 — 15 gives the expected ‘shrinkage’ when estimating
the DGE of a variant in family-based GWAS compared to estimating the population effect using
standard GWAS. This raises the possibility that 75 could be estimated from the average
‘shrinkage’ of DGEs compared to population effects of genome-wide SNPs, assuming AM is the
only source of shrinkage.

Estimating indirect genetic effects accounting for assortative mating

The above section suggests that one way to assess evidence for IGEs while accounting for AM
would be to compute the ratio between direct and population effects for a particular PGI, and
to compare this to an estimate of p; (Equation 15), py, the ratio that would be expected due to
AM alone without IGEs. If the estimated ratio between direct and population effects, Sk/,@k,
was statistically significantly different from p;, then this would constitute evidence that IGEs
(and/or other forms of gene-environment correlation, such as population stratification) are
present.

In the Methods and Supplementary Note Sections 7-9, we derive a similar but more formal
procedure for performing two-generation PGI analysis accounting for AM (Figure 3). The inputs
of this procedure are: an estimate of the correlation between parents’ incomplete DGE PGls, 7% ;
estimated regression coefficients from a regression of standardized offspring phenotype onto
standardized offspring and parental (incomplete) DGE PGls (Equation 13), (Sk, ay); and an
estimate of h]%, such as from MZ-DZ twin comparisons (ACE model), RDR, or sib-regression.
These inputs are first used to estimate k = (1 — rk)6,f/h]%, the fraction of heritability the PGI
would explain in a random-mating population (Methods and Supplementary Note Section 8).
Estimates of k and r;, can then be combined to estimate 75 using a relationship between 75 and
1, we derive (Supplementary Note Section 7.2):

Tk

BT k(- kr,
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Given ;5 and hf, the equilibrium heritability is given by h2; = hf /(1 — r5). The IGE of the true
DGE PGI, as (Equation 9), can be estimated two ways. One is based on the ratio between direct
and population effects of the incomplete DGE PGI, which we show to be (Supplementary Note
Section 7.4):

Opgrk _ Pk
Braik 1+ (A +715)as

By rearranging, we obtain an expression for a:

Spcrk
Pr — ﬁ—
_ PGL:k
Qg =5———
PGl:k (1 + T&)
PGIL:k
. . e . . . . SpGlk -
This equation matches the intuition that if the direct to population effect ratio, ==X, is smaller
PGL:k

than would be predicted under a model without IGES (py), this implies ag > 0, i.e. that there is
an IGE component positively correlated with the DGE component.

We then estimate a5 using estimates of &y, Sy, k, 15, and p;, (Methods):

)
P PGl:k
Pe=p
~ PGl:k
A5y = 5
APGI:k (1 + fc?)
PGL:k
Equation 16

An alternative route to estimating a is to use the ratio between the average NTC and the direct
effect of the PGI: apg .k /Opcr.k- Kong et al. estimated that this ratio was 0.427 for an EA PGl, and
used this as the basis of their argument that IGEs on EA are substantial®!. In Supplementary
Note Section 7.4, we show that:

ApGlk _ A +7r)as+ (1 —pyg)

Spcrk 1+
Equation 17

This shows that the average NTC is the sum of two components: one due to AM-induced
correlation with the DGE component that the PGl would be uncorrelated with under random
mating, (1 — px)/(1 + 1); and one due to parental IGEs, (1 + r5)as/(1 + 13). By
rearrangement and substitution, we obtain:

Aper.
[px + krs] 5PGI'k —(1=py)
a5 = PGI:k _

1+r5
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This yields a second sample estimator of as:

~ | a1 @l ~
(B + o] Zea _ (1 — )
_ 6PGl:k
1+ 7
Equation 18

U5y =

Although less intuitive than the estimator based on the ratio between direct and population
effects (&4,, Equation 16), @, is generally to be preferred because @pgy.x and Spgp. can be
estimated from the same regression (Equation 13), making it easier to compute the
approximate sampling variance (Supplementary Note Section 9). Simulations indicated that,
when estimated from the same data, &5, and @5, give almost identical results (Supplementary
Table 7).

Correlation between Regression coefficients from two- Heritability estimate from
parents for observed PGl generation PGl analysis twin studies (ACE) or RDR
2 __ _ 2

Tk (Operks @per:k)  hi = (1 —rs)h,

Estimation Procedure

k 2
Fraction of T's ) heq Un:s
heritability PGI Correlation Equilibrium Contribution to phenotypic
would explain in betwegn parents heritability variance of indirect genetic
a random-mating true direct effect effect correlated with direct
components effects

population

Figure 3. Schematic of two-generation PGI analysis accounting for assortative mating. A PGl is used as an instrument in order
to make inferences about the impact of assortative mating (AM) and indirect genetic effects (IGEs) on phenotype variation. The
inputs are the correlation between parents’ observed PGls, 1y, the regression coefficients from two-generation PGl analysis
(Equation 13); and an estimate of h}% from MZ-DZ twin comparisons (ACE model), sib-regression, or RDR. These inputs are then
put through a series of non-linear estimating equations (Methods) in order to estimate k, the fraction of heritability the PG/
would explain in a random-mating population; g, the correlation between parents’ true direct genetic effect (DGE) components;
hgq, the equilibrium heritability (which is larger than h]% when there is AM); and vy.5 the proportion of phenotypic variance
contributed by the IGE component that is correlated with the DGE component (when a PGl constructed from unbiased DGE
estimates is used). A glossary of symbols is included after the Discussion.

Given an estimate of ag, &g, along with an estimate of hgq (above), one can then estimate the
fraction of phenotypic variance contributed by the IGE component that is correlated with DGE
component, v,.s (Equation 11). We estimate this as:

917:5 = 2(1 + 7"\'5)&5(1 + &5)flgq.
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We implemented the estimation procedure (Figure 3) in snipar
(https://qithub.com/AlexTISYoung/snipar). By inputting an estimate of h]% along with the data
required to perform two-generation PGl analysis (offspring phenotypes and genotypes/PGls,
and observed and/or imputed parental genotypes/PGls), snipar will estimate Spg.x, Apcr:k,
Braik Ter K, Ts, hgq, Pk, a5, and v, s, along with approximations to their sampling variances
(Methods and Supplementary Note Section 9).

Simulation study

We simulated 16 phenotypes with varying parameters using the simulate.py module in snipar
(Methods and Supplementary Table 1). For each phenotype, we simulated the first-generation
by random mating. We simulated 30,000 independent families and 1,000 causal SNPs, with two
full-sibling offspring in each family. We simulated a DGE component that explained 50% of the
phenotypic variance, i.e. v; /v, = 0.5, in the first-generation. For some phenotypes, we also
simulated a parental IGE component that explained 12.5% of the variance in the first
generation, i.e. ve~g/vy = 0.125. We simulated DGEs and IGEs of individual SNPs from a
bivariate normal distribution. We set the correlation between DGEs and IGEs, r§n, to0,0.5, or 1.
For each set of IGE parameters, we simulated phenotypes affected by AM of varying strengths:
the phenotypic correlation between parents in each generation was set to 0, 0.25, 0.5, and 0.75.
In order to reach approximate equilibrium, we simulated 20 generations of mating after the
first-generation produced by random mating.

We found a close agreement between our theoretical results on the equilibrium phenotypic
variance decomposition (Equation 4) and the simulation results (Supplementary Table 1 and
Supplementary Figure 1). Using the last two simulated generations, we performed two-
generation PGl analysis using PGls constructed from the true DGEs plus estimation error
(Methods and Supplementary Tables 2-5). Although the theory was derived assuming that we
have a PGI constructed using the true DGEs as weights for a subset of causal variants, we tested
a different scenario, in which we used the true DGEs plus estimation error (as could be obtained
from a family-based GWAS) as weights:

| & L
PGI?j = ﬁZ(& +es1) (911 — 2f1); v = Var (2(51 +es0)(gij1 — 2fl)>;
=1 =1

where €5, were simulated as independent variables with N (0, v.5) distribution. The variance of
the estimation error, v.5, was set in multiples of the variance of the true DGEs: 0 (standardized
true DGE PGl), 1, 10, and 100. The fraction of heritability explained by the PGls in a random-
mating population (k) was thus approximately equal to 1/(1 + v,). So, for v = 0,1,10,100,

k = 1,0.5,0.09,0.01.
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Figure 4. Simulation results for a direct genetic effect PGI. Across 16 simulated phenotypes (Methods), we computed PGls using
weights equal to the true direct genetic effects (DGEs) plus a noise term of variance equal to the variance of the true DGEs,
simulating estimation error. This gave a DGE PGl that explained approximately 50% of the heritability in a random-mating
population (Supplementary Table 3). We performed two-generation PGl analysis (Methods and Figure 3) in order to estimate a)

15, the correlation between parents’ true DGE components (that explain all of the heritability); b) hfq, the equilibrium heritability;

¢) as, the indirect genetic effect (IGE) of the true DGE PGI; and d) the proportion of phenotypic variance contributed by the IGE
component that is correlated with the DGE component, v,.s. Vertical and horizontal error bars indicate 95% confidence intervals.

A glossary of symbols is included after the Discussion.

To complete the inputs (Figure 3), we estimated 73, using the sample correlation between the
parents’ PGl values, and we used the true value of h]% = (1 — 15)h&, as the heritability input.
We give results for v = 1,k = 0.5 in Figure 4 and Supplementary Table 3, which shows the
procedure produces approximately unbiased estimates of 7y, hgq, as, and v,.5 with accurate
standard errors. However, while the inference procedure produces accurate results when k =
0.5, and reasonably accurate results for k = 0.09 (Supplementary Figure 2 and Supplementary
Table 4), it produces biased and unstable results when k = 0.01 (Supplementary Table 5 and
Figure 5b). This is because, when &y, aj, and 1, are close to zero, noise in the estimates makes
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the inference unstable since many terms in the estimating equations involve ratios of
parameters.

While the theory was derived for PGls constructed from DGEs, most IGE analyses to date have
used PGIs constructed from the results of standard GWAS, which estimates ‘population effects’.
The population effect of a variant [ is: 5; = §; + 1; + ¢;, where ¢; represents confounding
factors that contribute to the population effect of SNP [, including from AM34, PGls derived from
standard GWAS also have estimation error, €g;, giving:

L

L
1
PGIZ = \/_52(51 +n+ ¢+ €5)(gip — 2f); v = Var 2(51 +m+ a+ €p)(9i — 211)
=1

=1

Under a ‘null hypothesis’ of no IGEs or other forms of gene-environment correlation (e.g.
population stratification), B; = 6;/(1 — r5) (Equation 15 with k = 0). This implies the
population effects and DGEs are approximately the same up to a scale factor and therefore the
true DGE and population effect PGls are almost perfectly correlated. This implies that PGls
derived from standard GWAS can be used in the above procedure to test the null hypothesis
that there are no IGEs or confounding factors other than AM.
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Figure 5. Inferring indirect genetic effects (IGEs) using population effect and noisy direct genetic effect (DGE) PGls. a) We
compare inferences of v;.s when using a ‘population effect PGI’ (Supplementary Table 6), i.e. a PGl constructed using weights
equal to the sum of the DGE and IGE of the SNP plus estimation error, and a DGE PGl, i.e. a PGl constructed using DGEs plus
estimation error (Supplementary Table 3). We show results for phenotypes with non-zero IGEs (Supplementary Table 6). Here, the
estimation error was set to be equal to the variance of the sum of the true DGEs and IGEs, such that the PGls captured around
one half (or a little less) of the heritability in a random-mating population. b) Across all 16 simulations, estimates of v,.s when
using a DGE PGl that explains only around 1% of the heritability in a random-mating population (Supplementary Table 5).
Vertical and horizontal error bars indicate 95% confidence intervals.

To investigate how PGls constructed from standard GWAS perform in our procedure, we
constructed ‘population effect PGls’ as such:

20



L L
1
PGIiﬁ} = ﬁZ((S‘l +n + eﬁl)(giﬂ — 2fl); v = Var (Z(Sl +n + eﬁl)(giﬂ — 2fl)>.
=1 =1

where €g; are i.i.d. N(0, v¢g) random variables with vz set to multiples of Var;(4; + ;). (We
ignore the confounding due to AM in the population effects since this should be approximately
equal to inflating §; + n; by a constant scale factor across variants.)

We compared inference of v,.5 using DGE and population effect PGls with k = 0.5 in Figure 5a
(Supplementary Tables 3 and 6). While v, s as inferred from a population effect PGI cannot be
interpreted as the proportion of phenotypic variance contributed by the IGE component that is
correlated with the DGE component, our results show that the population effect PGI can detect
the presence of IGEs when the DGE PGl cannot (Figure 5a). This is because there are cases when
the DGE and IGE components are uncorrelated or weakly correlated, so a PGI constructed from
DGEs does not detect the presence of IGEs. For example, if DGEs and IGEs are uncorrelated and
there is no AM, the DGE and IGE components are uncorrelated, and a5 = 0, so the DGE PGI
does not detect IGEs, even though they are present. However, because IGEs contribute to
population effects, the IGEs contribute to the weight vector of the population effect PGl,
enabling the population effect PGI to detect the presence of IGEs even when DGE and IGE
components are uncorrelated (Table 1). A limitation of this analysis is that it ignores the
potential impact of population stratification confounding on PGls derived from standard GWAS.

Analysis of PGls for height and educational attainment

We performed two-generation PGl analysis (Figure 3) for height and EA using results from
Okbay et al. 2022 (ref*?) (Methods and Table 2). Okbay et al. estimated the ratio between PGl
direct and population effects and the correlation between parents’ PGls using PGls constructed
from standard GWAS estimates of ‘population effects’. In addition to the results reported in
Okbay et al., we also need an estimate of hﬁ. We considered two different estimates of hf for
height: one from a meta-analysis of twin studies using the ACE model*?, and one from applying
RDR to Icelandic data?®. For educational attainment (EA), we used an estimate from a meta-
analysis of twin studies®3. We did not use an RDR or sib-regression estimate as the only available
estimates?32° lacked sufficient precision for reliable inference (Methods and Supplementary
Table 7).

Our results using the RDR estimate of h]% for height show no evidence for IGEs, and the direct to
population effect ratio (dpg1.x/Brgr.k = 0.910, S.E.=0.009) is statistically indistinguishable from
the prediction due to AM alone (without IGEs): p, = 0.886 (S.E.=0.028). We estimated that the
correlation between parents’ DGE components is 75 = 0.208 (S.E.=0.041), around double that
for the observed PGI. Using this estimate of 75, we can adjust the RDR estimate of heritability to
give an estimate of the equilibrium heritability of height: hgq = 0.699 (S.E.=0.075). However, if
we use the twin estimate of hf, we obtain an implausible result that there are IGEs that are
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negatively correlated with DGEs. This implausible result could be due to overestimation of
heritability by twin studies?®, which leads to underestimation of k and therefore a prediction of
the ratio between direct and population effects of the PGl that is too low. An alternative (and
not mutually exclusive) explanation is that the estimate of 1y, is too high. This could happen
when there are confounding factors captured by the height PGI (which is derived from standard
GWAS) that are correlated between parents, thereby inflating the correlation between parents’
PGls beyond what would be expected for a DGE PGI (with no confounding) that explains the
same fraction of heritability.

Educational
Height (RDR) Height (Twin) Attainment (Twin)
Parameter Estimate S.E. Estimate S.E. Estimate S.E.

Spark/ Braik 0.910 0.009 0.910 0.009 0.556 0.020
Ty 0.106 0.020 0.106 0.020 0.175 0.020

h? 0.554 0.044 0.729 0.018 0.400 0.024

k 0.452 0.038 0.346 0.014 0.069 0.007

Ts 0.208 0.041 0.256 0.045 0.755 0.035
hgq 0.699 0.075 0.979 0.066 1.631  0.281
P 0.886 0.028 0.833 0.032 0.297 0.037

as -0.022 0.025 -0.068 0.026 -0.265 0.029
Vy:s -0.036 0.045 -0.155 0.070 -1.114 0.289

Table 2. Two generation PGI analysis for height and educational attainment. We applied two-generation PGl analysis (Figure 3)
to the results of Okbay et al.*? for height and educational attainment (EA) PGls. Okbay et al. gave estimates of the ratio between
direct and population effects of the PGIs, Spgy.x. /B, and of the correlation between parents’ PGls, 1;,. To complete the inputs
to two-generation PGl analysis, we input estimates of h]% from RDR or from the twin ACE model. We used two different estimates
of h% for height: one from a meta-analysis of twin studies*’, and one from applying RDR to Icelandic data?®. For EA, we used an
estimate of h}% from a meta-analysis of twin studies using the ACE model®3. By applying a series of non-linear estimating
equations (Figure 3 and Methods), we obtained estimates of the fraction of heritability the PGl would explain in a random-
mating population, k; the correlation between parents’ direct genetic effect (DGE) components, rs; the equilibrium heritability,
hgq = hf2 /(1 —15), the ratio between direct and population effects of the PGI that would be expected due to assortative mating
in the absence of indirect genetic effects (IGEs), p; the IGE of the true DGE PGl (that captures all of the heritability), as; and the
contribution to phenotypic variance from by IGE component that is correlated with the DGE, vy,.s. A glossary of symbols is
included after the Discussion.

For EA, we estimated that rs = 0.755 (S.E.=0.035). This derives from the fact that the estimated
correlation between parents’ PGls was r;, = 0.175 (S.E.=0.020), and the PGI was estimated to
explain only around 7% of the heritability in a random-mating population. This very high
estimate of 5 results in an impossibly high estimate of equilibrium heritability (being
statistically significantly above 1) and an inference that there are strong IGEs negatively
correlated with DGEs. Two plausible explanations for these implausible results are:
overestimation of heritability by twin studies?®, and confounding in the EA GWAS summary
statistics34 that inflates the correlation between parents’ PGl values. The second phenomenon
implies that part of the correlation between parents’ PGls is due to confounding factors that are
correlated between parents — such as social class — in addition to DGEs, leading to a
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correlation that is higher than would be obtained from a DGE PGI that explains the same
fraction of heritability.

Discussion

In this manuscript, we give a decomposition of the phenotypic variance (Equation 4) under
assortative mating (AM) at equilibrium for a phenotype affected by both direct genetic effects
(DGEs) and indirect genetic effects (IGEs). We achieve this by a generalization of the method of
Crow and Felsenstein!! to a phenotype affected by both DGEs and IGEs. The equilibrium
variance is expressed in terms of the random-mating variance components as defined by Young
et al. in relation to the RDR method of estimating heritability?® (Equation 1) and the equilibrium
correlations between parents' DGE and IGE components (Figure 1). We connected our results to
estimation of heritability using random variation in realized relatedness between siblings?, ‘sib-
regression’. We demonstrated theoretically that sib-regression estimates the random-mating
genetic variance divided by the equilibrium phenotypic variance, h}%, in agreement with Kemper
et al.?3,

An important unsolved problem in human genetics is how to interpret the results from re-
gression models including both proband (phenotyped individual) and parental PGIs37:3%43, The
expected regression coefficient on the proband PGI, &pg, is called the direct effect of the PGI,
and the coefficient on the parental PGl (sum of maternal and paternal PGls) is called the
average non-transmitted coefficient (NTC), apg;. We show that, under random mating and for
certain special weight vectors, dpg; and apg; are simple functions of the random-mating
variance components (Table 1), with apg; reflecting IGEs. When there is AM, the interpretation
of the regression coefficients is more complicated. If a PGl would explain only a fraction k of the
heritability in a random mating population, then apg; captures — in addition to IGEs — the AM-
induced correlation of the PGI with the DGE component that the PGl would be uncorrelated
with in a random mating population (Equation 17).

We derived theoretical results for PGl analysis under AM at equilibrium. We showed that, when
assortative mating is strong and k < 1, apg;/dpg; can be substantial even in the absence of IGEs
(Figure 2). Many studies have estimated how much PGl regression coefficients ‘shrink” within-
family31434451 i e how the coefficient on the proband PGl changes when controlling for
parental or sibling PGls. In our framework, this ‘shrinkage’ corresponds to the ratio between
direct and population effects, dpg;/fpgi- Our results show that substantial shrinkage can be
expected when AM is strong, even in the absence of IGEs (Figure 2). These results argue against
naive interpretations of statistically significant estimates of apg; or substantial ‘shrinkage’ of PGl
regression coefficients within-family as demonstrating the influence of IGEs.

In 2018, Kong et al. presented analyses of an educational attainment (EA) PGl in Icelandic data,
and estimated that apg;/dpg; = 0.427. Kong et al. recognized that apg; could reflect the AM-
induced correlation of alleles not transmitted from parents to offspring with transmitted alleles.
Kong et al. proposed a technique to adjust for the bias, concluding that the bias was small and
therefore that IGEs on EA were substantial. However, the technique proposed by Kong et al.
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relied upon strong assumptions, including that there had been only one generation of
assortative mating and that direct and indirect genetic effects were perfectly correlated.
Furthermore, Kong et al. did not account for uncertainty in input parameters or in their
adjustment.

We develop a procedure (Figure 3 and Methods), implemented in snipar, that accounts for AM
by combining the results of two-generation PGl analysis with a family-based heritability
estimate (hf) and an estimate of the correlation between parents’ PGls (r3,). When applied to
PGIs constructed from DGE estimates, this produces estimates of the correlation between
parents’ DGE components, 15, the equilibrium heritability, hgq, and the contribution to
phenotypic variance from the IGE component that is correlated with the DGE component, v,,.s.
Simulations show that this gives approximately unbiased estimates along with accurate
standard errors when all the input parameters are estimated precisely (Methods and
Supplementary Tables 2-7). Unlike the procedure developed by Kong et al., our procedure does
not assume perfectly correlated DGEs and IGEs.

The theory underlying the method is derived for a PGI constructed using DGEs as weights.
However, almost all investigations of IGEs have been performed using PGls constructed using
‘population effect’ estimates from standard GWAS3143°1, The advantage of such PGls over PGls
constructed from DGE estimates from family-based GWAS is greater statistical power due to
larger sample sizes and the fact that ‘population effects’ capture both DGEs and IGEs. Under a
‘null model’ of AM but no IGEs, DGEs and population effects of variants should be
approximately perfectly correlated, implying that population effect PGIs can be used in our
procedure (Figure 3) to test a null hypothesis that there are no IGEs (or other confounding
factors beyond AM). Simulations indicate that population effect PGls can detect the influence of
IGEs in situations when DGE PGls do not (Figure 4), since they will do so even when DGE and IGE
components are uncorrelated.

We applied our method to results on EA and height population effect PGls from Okbay et al.*?
(Table 2). The height PGI results — using an estimate of h]% = 0.554 from applying RDR to
Icelandic data®* — indicated no evidence for IGEs on height and gave an estimate of the
equilibrium heritability of height of th = 0.699 (S.E. = 0.075). Our estimation procedure
produced nonsensical results when applied to the EA PGI, including that the equilibrium
heritability is above 1. The equilibrium heritability estimate is so high because our estimate of
the correlation between parents’ DGE components is so high: r5 = 0.755 (S.E.=0.035). This
derives from the fact that the correlation between the parents’ observed PGls is high, 13, =
0.175 (S.E.=0.020), even though the PGl is estimated to explain only around 7% of the
heritability in a random-mating population.

Our procedure for estimating the correlation between parents’ underlying DGE components, 7y,
accounts for PGl-environment correlation — such as from IGEs and population stratification —
although not for confounding in the GWAS summary statistics used to construct the PGI. This is
an advantage over a recently proposed structural equation model, rgensi*3, which uses siblings
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and their in-laws in combination with a PGI to estimate 5. Our estimate of 75 for EA was higher
than from rgensi applied to an EA PGl in the Norwegian Mother, Father and Child Cohort Study
(MoBa), which estimated rs = 0.37 (95% confidence interval: [0.21,0.67]). The primary reason
for this difference is that the rgensi model does not estimate the effect of the EA PGI within-
family — which is how our method accounts for PGI-environment correlation — and thus
obtained a much higher estimate for the fraction of heritability explained by the PGI: 25% (95%
confidence interval: [12%,42%]).

While the simulation results indicated that using a population effect PGI in our procedure
produces reasonably accurate results, the simulations did not consider the impact of population
stratification confounding in population effect estimates. We hypothesize that confounding
factors in the EA GWAS have inflated the correlation between parents’ EA PGls beyond that
which would be expected for a DGE PGI (without confounding) that explains the same amount
of heritability. This would have the effect of overestimating the correlation between parents’
DGE components and therefore the equilibrium heritability.

This manuscript has focused on estimating a consequence of cultural/vertical transmission from
parents to offspring, the IGEs that are induced when the parental phenotypes affecting the
offspring through the environment are themselves heritable. Previous research on estimation of
cultural/vertical transmission includes the cultural transmission model of Cloninger, Rice, and
Reich!®, extended twin and family designs (ETDFs) such as the ‘stealth’ and ‘cascade’ models,
and the structural equation model of Balbona et al.33. Unlike previous research, our results do
not rely upon a particular model of assortative mating. A difference from previous models is
that we do not model the total contribution of vertical/cultural transmission from parents to
offspring, only the heritable component of the parental phenotype that influences offspring
through the environment. While modelling the total contribution of vertical/cultural
transmission is important for predicting phenotypic correlations between relatives, it is less
important for PGl analyses and estimation of IGEs.

Our method does not make any assumptions about the parental phenotype through which
cultural/vertical transmission from parents to offspring operates and can model arbitrary
correlations between DGEs and IGEs. This is in contrast to most previous research — except for
the model from Cloninger, Rice, and Reich, which, while flexible, cannot separately identify
genetic and cultural transmission when fit to phenotypic correlations between relatives!®. ETFDs
can separately identify genetic and cultural transmission, but these models generally assume
vertical/cultural transmission operates through an observed phenotype. The same is true of the
structural equation model of Balbona et al., which is the only other method that uses PGls.

This manuscript provides a general theoretical framework for understanding the joint impact of
AM and IGEs on phenotypic variance components, heritability estimation, and PGl analyses. As
more genetic data on families becomes available, we will obtain more powerful family-based
GWAS summary statistics, enabling us to apply our estimation procedure to DGE PGls. We will
also obtain more precise heritability estimates from sib-regression?* and RDR>*. Together, these
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will enable application of the theoretical results and methodology developed here to quantify
the impact of IGEs and AM on phenotype variation.

Glossary
0; Direct genetic effect (DGE) of variant [
ul Average parental indirect genetic effect (IGE) of variant [
Jiji Genotype of sibling j in family i at variant [. Variants are assumed to be bi-allelic,
with genotypes counting the number of copies of the allele (0, 1, or 2) with
frequency f;
Ip(i)l Genotype of the father in family i at variant [
Im@)t Genotype of the mother in family i at variant [
par (i)l Combined parental genotype for family i at variant I: gpariyi = 9paiyt + Imai
7 Phenotype of sibling j in family i.
Aij, Apiy, | Direct genetic effect (DGE) component of sibling j in family i, the father in family
Aoy [, and the mother in family i:
Aij = X121 81(giji — 211) s Dpay = 2i=1 61(Gpay — 211) 5
Ay = 2iz161(Gmay — 2f)-
Apar(i) The combined parental DGE component:
Apar(i) = Bpciy + Bmiy.
Moy Mm() Paternal and maternal indirect genetic effect (IGE) components:
Moy = i1 M (Gpay = 2£1), and Mgy = Blca M(Gmayn — 2f0)-
Ts Correlation between parents’ DGE components:
Ty = Corr(Ap(i),Am(i)).
T Correlation between parents’ IGE components:
s = Corr(Mpi), Mm@))-
Tsn Within-parent correlation between DGE and IGE components:
75y = Corr(mpy, Spiy) = COrr(tmcy, Smeay)-
rgn Between-parent correlation between DGE and IGE components:
Ty = Corr(ipeay, Smcy) = COrr(Mmey, Spew))-
Vg Random-mating variance of DGE component:
v, = Var(A;;) =2 %7, 62fi(1 = f)).
Venyg Random-mating variance of parental IGE component:
Ve~g = Var(np(i) + nm(i)) = 4Z%=1 Uzzﬁ(l - fl)
Cge Random-mating variance due to covariance between DGE and IGE components:
Cge = ZCOV(Sijrnp(i) + Um(i)) = 42%:1 Smfi(1—f).
v, Equilibrium phenotypic variance.
v, Equilibrium variance of DGE component: 1,7 = U—‘i.
s
hZ, Equilibrium heritability: h2, = v,%/v}°
e
vegg Equilibrium variance of parental IGE component: v:Eg = iiz Venyg
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cgg Equilibrium variance due to covariance between DGE and IGE components:
eq _ (..c T 2Ve~gVg
cge = (75 +735) (-1 (1=T5)’
rgn Random-mating correlation between DGE and IGE components.
R;jk Realized relatedness between siblings j and k in family i.
h]§ Within-family heritability estimand at equilibrium (as from MZ-DZ twin
comparisons, relatedness disequilibrium regression, and sib-regression):
RE =vy /vyt = (1 —15)hE,
PGI;; Polygenic index of sibling j in family i
PGIpari) Combined parental polygenic index in family i:
PG,y = PGl gy + PGly(y, where PG,y and PGl,,(;) are, respectively, the
paternal and maternal PGls
OpGl, APGI Direct effect and average non-transmitted coefficient (NTC) of a PGI defined by
the regression: Y;; = 8paiPGl;; + apgPGlp,e) + €;5-
Brai Population effect of PGI defined by the regression: Y;; = BraiPGl;; + €;;.
as Average non-transmitted coefficient of the true direct genetic effect PGI, i.e. of
the DGE component, defined by the regression:
Yij = Ay + asBpary + €
Vp.s The contribution to phenotypic variance from the IGE component correlated
with the DGE component (both its variance and variance due to covariance with
the DGE component):
Vp.s = 2(1 + 15)as(1 + ag)hiy
p(;lfjk Variance-standardized direct effect PGI that explains a fraction k of the
heritability in a random-mating population — for example, with §; = § and f; =
f foralll,
8 8
PGIijk = \/T—kazLﬂgijl = 2f), v = Var(Zﬂﬁ(gijl - Zf))
SpGiiks The direct effect and average non-transmitted coefficient of a DGE PGl that
ApGlk explains a fraction k of the heritability in a random-mating population, defined
by a regression with phenotype and PGl standardized to have variance 1:
Yij 8 )
—L = 6PGl:kPGIijk + aPGI:kPGIp;’;r(i) + eij'
Braik The population effect of a DGE PGl that explains a fraction k of the heritability in
a random-mating population, defined by a regression with phenotype and PGI
standardized to have variance 1:
Yij )
—= = Bpark PGL + €.
y
T The correlation between parents’ DGE PGls that explain a fraction k of the

heritability in a random-mating population:

5 5
1, = Corr (PGIP’(‘D, PGIWi‘(i)).
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Pk The ratio between direct and population effects of a DGE PGI that explains a
fraction k of the heritability in a random mating population in a model without

indirect genetic effects: p, = gpﬂ =1-1-k)rs.
PGL:k
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Data Availability

Simulated populations (genotype and phenotype data) will be made available for download on
publication of the final version of this manuscript.

Code Availability

The code for performing simulations of phenotypes affected by DGEs, parental IGEs, and AM is
available as a command line script (simulate.py) in snipar
(https://github.com/AlexTISYoung/snipar). The code for performing two-generation PGl analysis
accounting for AM (Figure 3) is available as a command line script (pgs.py) in snipar. We provide
a tutorial on simulating data and performing two-generation PGl analysis here:
https://snipar.readthedocs.io/en/latest/simulation.html

The code for the specific simulations and PGl analyses described in this paper is available here:
https://github.com/AlexTISYoung/snipar/tree/simulate.
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Methods

Estimating the fraction of heritability a PGl would explain in a random-mating population

In real-world applications, we do not know k, the fraction of heritability the PGl would explain
in a random-mating population. In Supplementary Note Section 8, we show that

1- Tk)al%
=7 2
hf
Equation 19

k

To estimate k, consider that we have unbiased and statistically independent estimates of 1y,
given by #; 8, given by 8;; and h? = v, /v,?, given by h?. The estimate of h? could come from
sib-regression, RDR, or from the ACE twin model. In Supplementary Note Section 8, we propose
a bias-corrected estimator of k,

(1= 7)(1 — 2,72) (82 - var(8,))
hf
Equation 20

k=

)

2
hy
Var(ﬁjzc)

Estimating the correlation between parents’ DGE components and equilibrium heritability

where Z, =

In order to make inferences about the impact of assortative mating on the DGE component, we
need to estimate

15 = Corr(PGIS ), PGS, ;)

the correlation between the parents’ DGE components. We estimate 75 by (Supplementary Note
Section 7.2):

. Ti

s ==
k+ @1 -k,
Equation 21
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with k as defined above. Provided that the estimators of k and 13, are consistent, this estimator
of 7 is consistent. However, the estimator is biased, and becomes unstable when the estimates
of k and r;, are noisy, or when the denominator k + (1 — k)ry, is close to zero (Supplementary
Table 7).

As shown above, hg; = h}%/(l — 15), which implies one can obtain an estimate of hZ; by
combining an estimate of hf with an estimate of rs:

72
1— 7y

Estimating the ratio between direct and population effects due to AM

To estimate what the ratio between direct and population effects of a PGls would be under a
model with AM at equilibrium but without IGEs, one can combine k and 75 as estimated above
(Equations 20 and 21):

pr=1—(1-k)fs.
Equation 22

Parameter estimate bias and sampling error estimation

Since the parameters are estimated using a series of non-linear equations, we expect the
estimators to be biased even when the input parameter estimates are themselves unbiased.
Furthermore, standard errors are approximated using the Delta method (Supplementary Note
Section 9), which can be inaccurate when the input parameters are noisy. We simulated input
parameter data emulating that which could be obtained from performing two-generation PGl
analysis using either 10,000 or 50,000 independent trios along with a statistically independent
and unbiased estimate of h]g (Supplementary Note Section 10). We found that parameter
estimates were approximately unbiased and standard errors were accurate when all input
parameters were estimated precisely (Supplementary Table 7), i.e. the ratio between the true
parameter value and its standard error was greater than around 3. When, for example, the
estimate of h]% was noisy and/or k was small, parameter estimates could be substantially biased
and standard errors inaccurate.

Simulation of populations and phenotypes

We simulated 16 phenotypes with varying parameters using the simulate.py module in snipar
(Supplementary Table 1). Each phenotype was simulated by first simulating 60,000 independent
individuals at 1,000 causal SNPs. SNP minor-allele frequencies (MAFs), f;, were simulated from a
distribution with density proportional to 1/f;, ranging from f; = 0.05 to f; = 0.5. We chose this
distribution since MAFs are expected to have a distribution proportional to 1/f for a random-
mating population of constant effective size>®. For each SNP [, the genotype of each individual
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was drawn independently from a Binomial(Z2, f;) distribution. The 60,000 individuals were then
randomly paired into 30,000 parent-pairs. For each parent pair, we simulated meiosis, with
independent segregation between SNPs, to produce one male and one female (full-sibling)
offspring. To simulate the DGE and IGE components in this first offspring generation produced
by random-mating, we drew DGEs and IGEs of individual SNPs independently from a bivariate

normal distribution:
R )

where rg)n was set to 0, 0.5, or 1 depending upon the simulation. The DGE and IGE components
were then scaled to have the desired variance:

\/7 Z 61 (gl]l zfl)

1000

Np () + Mm@G) = (gpar(i)l - Zfl);

where
1000 1000
Vs = Var z 6 (gijl - zfz) ; vy = Var z Ul (gijl - zfl) ;
=1 1=1
and v,..4 was set to 0.125 or 0 depending on the simulation. The phenotype of sibling j in

family i was constructed as:
Yii = Aij + Mpy + may + €ij)

where €;; were simulated as independent random variables with N (0, o, 2) distribution. The
variance of the residuals, 62, was set such that the overall phenotypic variance in the first
generation produced by random-mating was 1:

1-— (vg + Veug + Cge) =1- (vg + Veug + 1”69,1 /ngve~g).

This implies that the heritability in the random-mating population was 0.5 for all phenotypes.
For phenotypes with IGEs, the proportion of variance explained by parental IGEs was 0.125, and

N

0,

m
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the proportion of variance explained by covariance between DGEs and IGEs was ¢4, =
15, V0.125 ~ 0,0.177,0.354 for r5), = 0,0.5, 1.

Subsequent generations were produced by random-mating or AM. AM was simulated by
matching males and females into parent-pairs according to their rank on a noisy observation of
their phenotype value:

Zp@y = Yo + Up@y; Zm() = Ym@i) + Umqy;
where u, ;) and u,,;y were simulated as independent random variables with distribution
N(0,c2,). The noise level 62, was set such that Corr(Yp(i), Ym(i)) ~ 1, in each generation,

which is achieved when 62, = (r— - 1) vy, where v, is the phenotypic variance in the parental
y

generation. For each set of IGE parameters, we performed simulations with different strengths
of AM: 1, = 0,0.25,0.5,0.75. We performed 20 generations of random (r;, = 0) or assortative
mating (r, > 0), recording the phenotype values and true variance components in each
generation. We retained the genotypes of the final two generations in order to perform PGl
analyses.
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