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Abstract 
 
Both direct gene-c effects (effects of alleles in an individual on that individual) and indirect gene-c effects — effects of alleles in 
an individual (e.g. parents) on another individual (e.g. offspring) — can contribute to phenotypic varia-on and genotype-
phenotype associa-ons. Here, we consider a phenotype affected by direct and parental indirect gene-c effects under 
assorta-ve ma-ng at equilibrium. We generalize classical theory to derive a decomposi-on of the equilibrium phenotypic 
variance in terms of direct and indirect gene-c effect components. We extend this theory to show that popular methods for 
es-ma-ng indirect gene-c effects or ‘gene-c nurture’ through analysis of parental and offspring polygenic predictors (called 
polygenic indices or scores — PGIs or PGSs) are substan-ally biased by assorta-ve ma-ng. We propose an improved method for 
es-ma-ng indirect gene-c effects while accoun-ng for assorta-ve ma-ng that can also correct heritability es-mates for bias 
due to assorta-ve ma-ng. We validate our method in simula-ons and apply it to PGIs for height and educa-onal aKainment 
(EA), es-ma-ng that the equilibrium heritability of height is 0.699 (S.E. = 0.075) and finding no evidence for indirect gene-c 
effects on height. We es-mate a very high correla-on between parents’ underlying gene-c components for EA, 0.755 (S.E. = 
0.035), which is inconsistent with twin based es-mates of the heritability of EA, possibly due to confounding in the EA PGI 
and/or in twin studies. We implement our method in the soWware package snipar, enabling researchers to apply the method to 
data including observed and/or imputed parental genotypes. We provide a theore-cal framework for understanding the results 
of PGI analyses and a prac-cal methodology for es-ma-ng heritability and indirect gene-c effects while accoun-ng for 
assorta-ve ma-ng.  
 
Introduc.on 
 
Since Galton’s 1886 work on the rela<onship between parent and offspring height1, explaining 
resemblance between rela<ves has been central to the biometrical approach to heredity. R.A. 
Fisher's founda<onal 1918 paper, The correla*on between rela*ves on the supposi*on of 
Mendelian inheritance2, unified the biometrical approach to heredity — whose intellectual 
lineage traces back to Galton — with Mendelian inheritance3. Fisher’s primary concern in this 
work was to show how Mendelian gene<cs, which describes the inheritance of discrete en<<es 
called alleles, could explain resemblance between rela<ves for con<nuous phenotypes like 
height. Fisher showed that, when alleles have addi<ve effects, and there are no other sources of 
correla<on between rela<ves, the phenotypic correla<ons between rela<ves are determined by 
the heritability of the phenotype, ℎ!, and their coefficient of relatedness — provided that the 
popula<on is infinite and ma<ng randomly2,4–6.  
 
ANer this groundbreaking result, Fisher’s paper goes on to address the more difficult problem of 
assorta<ve ma<ng (AM) — non-random ma<ng leading to phenotypic correla<on (usually 
assumed to be posi<ve) between mothers and fathers, and therefore correla<ons between 
maternally and paternally inherited alleles. Fisher showed that AM induces a correla<on 
between maternal and paternal gene<c components, which increases the variance of the 
gene<c component in the subsequent genera<on. The correla<ons between rela<ves’ gene<c 
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components and the variance of the gene<c component increase towards equilibrium values as 
this process con<nues, requiring only a handful of genera<ons to reach an approximate 
equilibrium2,7–9. Fisher derived the phenotypic correla<ons between rela<ves at 
equilibrium2,4,6,7, which Greg Clark showed can be closely fit to correla<ons between rela<ves’ 
social status in England in a dataset spanning 1600-2022 (ref10) — although these data do not 
rule out environmental effects of parents on offspring.   
 
Building on Fisher’s work, Crow and Felsenstein gave an alterna<ve deriva<on of the increase in 
gene<c variance due to AM11, also detailed in Chapter 4 of Crow and Kimura’s textbook7. They 
showed that, for a phenotype affected by many gene<c variants spread across the genome, the 
gene<c variance is inflated by a factor of 1/(1 − 𝑟") at equilibrium, where 𝑟"  is the correla<on 
between maternal and paternal gene<c components. Their method does not assume a 
par<cular model of AM, just that it has reached an equilibrium. The most common model of 
assorta<ve ma<ng states that all the correla<on between parents’ gene<c components is 
explained by matching on the observed phenotype, a model oNen called primary phenotypic 
assortment12,13. Assuming primary phenotypic assortment, and that the regression of gene<c 
component onto phenotype is linear8, it can be shown that 𝑟" = ℎeq! 𝑟%, where ℎeq!  is the 
equilibrium heritability, and 𝑟% is the correla<on between parents’ phenotypes2,7,8,11. 
 
The theory described above applies to phenotypes determined by addi<ve effects of alleles in 
an individual on that individual, called direct gene<c effects (DGEs), and random environmental 
effects/noise. In the 1970s, Cavalli-Sforza and Feldman developed models where, in addi<on to 
gene<c transmission from parents to offspring, parental phenotypes affect the offspring's 
phenotype through an environmental process called “ver<cal transmission” or “cultural 
transmission”14,15. The models of Cavalli-Sforza and Feldman were influen<al in the crea<on of 
the field of gene-culture coevolu<on16. In 1978, Cloninger, Rice, and Reich extended the models 
of Cavalli-Sforza and Feldman to include transmission of a general “cultural value” (possibly 
dis<nct from the offspring phenotype) from parent to offspring17. They extended this model to 
include AM due to matching on the phenotype, giving equilibrium results18. Their model makes 
predic<ons about the correla<ons between rela<ves18, and versions of their model have been 
used to analyse lifespan using a large pedigree from Ancestry.com19 and educa<onal adainment 
(EA) using Swedish register data20. However, these analyses — like Clark’s analysis of social 
status in England10 — are unable to separate gene<c transmission (heritability) from cultural 
transmission without making assump<ons that are unlikely to be true.  
 
Building on these ver<cal/cultural transmission models, behaviour gene<cs researchers 
extended the classical twin design — based on es<ma<on of heritability by comparison of 
monozygo<c (MZ) and dizygo<c (DZ) twin pairs — to ‘extended twin and family designs’ (ETFDs) 
that also model the phenotypes of parents and other rela<ves of DZ and MZ twins. These ETFDs 
can model ver<cal transmission from parents, in addi<on to heritability12. The ‘stealth model’ 
from Trued et al. in 199421 enabled modelling of assorta<ve ma<ng due to matching on the 
observed phenotype. Keller et al.12 introduced the ‘cascade model’ in 2009, a generalisa<on of 
the stealth model that allows the matching to take place on a latent, unobserved phenotype. 
Although ETFDs can separately iden<fy gene<c and cultural transmission from parents while 
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accoun<ng for assorta<ve ma<ng, obtaining precise es<mates of the parameters of these 
models can be difficult due to limited samples of twin pairs with phenotype data on their 
rela<ves22.  
 
While empirical analyses of genotype-phenotype data have produced es<mates of some 
important parameters that relate to ver<cal transmission models — including heritability23–27, 
correla<ons induced by assorta<ve ma<ng13,28–30, and indirect gene<c effects (IGEs, also called 
'gene<c nurture')31–33 — robust es<ma<on of ver<cal transmission model parameters remains 
challenging22,33.  
 
IGEs are causal effects of alleles in one individual on another individual’s phenotype, mediated 
through the environment. When IGEs come from gene<cally related individuals, they contribute 
to the genotype-phenotype associa<ons es<mated in genome-wide associa<on studies (GWASs) 
and lead to bias in heritability es<mates from many methods26,31,34,35. This manuscript focuses 
on parental IGEs, effects of alleles in parents on their offspring through the rearing 
environment, but IGEs could come from other classes of rela<ves, such as siblings31,34,36, or from 
unrelated individuals. Ver<cal transmission models induce parental IGEs when the parental 
phenotype that affects offspring through the environment is heritable: the gene<c variants that 
affect the parental phenotype will have IGEs on the offspring phenotype33,34. There is evidence 
that parental IGEs are important for educa<onal outcomes31,32, but this evidence has been 
contested as confounded with the influence of popula<on stra<fica<on and AM34,37–39. 
 
AM generates bias in most methods for es<ma<ng heritability23,40, including: classical twin 
studies23,41,42; methods based on realized relatedness between rela<ves, such as siblings23,24 and 
more distant rela<ves, as in Relatedness Disequilibrium Regression, or RDR23,26; LD-score 
regression, or LDSC40; and genomic relatedness-matrix restricted maximum likelihood, or 
GREML40. While techniques for adjus<ng for the bias due to AM have been proposed23, they 
typically assume that all the correla<on between maternal and paternal gene<c components is 
explained by matching on the phenotype. This model has been shown to be inaccurate for EA, 
where the correla<on between maternal and paternal gene<c predictors of EA is far higher than 
can be explained by matching on the phenotype13,20,43. Factors that may contribute to maternal 
and paternal gene<c predictors (or components) becoming more correlated than expected due 
to matching on the observed phenotype include: matching on a correlated phenotype that is 
more highly correlated with the underlying gene<c predictor/component than the observed 
phenotype12,13,30, and matching based on the phenotypes of the mate’s family members — 
and/or ancestry — in addi<on to the phenotype of the mate. It would therefore be desirable to 
have a technique for adjus<ng for bias due to AM that does not assume the correla<on 
between parents’ gene<c components is en<rely due to matching on the phenotype.  
 
Most studies examining evidence for IGEs have proceeded by correla<ng parental alleles not 
transmided to offspring with offspring phenotypes31,32. While this correla<on captures IGEs, it 
also partly captures the gene<c component of the phenotype with which the non-transmided 
alleles are correlated due to AM31,33,38,39. Kong et al.31 adempted to adjust for this bias due to 
AM, concluding the bias was small. However, they did not measure the uncertainty in their 
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adjustment, and the adjustment relied upon assuming that there had been only one genera<on 
of AM and that DGEs and IGEs are perfectly correlated. Balbona et al. proposed a structural 
equa<on model (SEM) to adjust for the bias due to AM in es<mates of IGEs33, but this method 
assumes correla<ons between parents' gene<c components are due en<rely to matching on the 
phenotype. The method of Balbona et al. addi<onally requires observa<ons on the parental 
phenotype through which IGEs/ver<cal transmission operate, or knowledge of the true 
heritability of the phenotype and an assump<on that the parental phenotype through which 
IGEs/ver<cal transmission operates is the same as the offspring phenotype. 
 
In this paper, we generalize Crow and Felsenstein’s11 approach (which considered only DGEs) to 
also include parental IGEs. We derive a decomposi<on of the equilibrium phenotypic variance in 
terms of DGE and IGE components that does not assume a par<cular model of assorta<ve 
ma<ng. We connect our results to es<ma<on of heritability using random-varia<on in realized 
relatedness due to Mendelian segrega<ons24,26, deriving the bias in these methods due to AM. 
We extend our approach to derive results on analysis of polygenic predictors (called polygenic 
indices or PGIs — also known as polygenic scores). We show how to assess evidence for IGEs 
from PGI analysis when there is AM and how to adjust for bias in heritability es<mates due to 
AM. We apply these results to PGIs for height and EA, and we correct for the bias in the height 
heritability es<mate due to AM. 
 
Results 
 
Phenotype model 
 
We model the phenotype of sibling 𝑗 in family 𝑖 as the result of DGEs, IGEs from parents, and a 
residual environment/noise term: 
 

𝑌&' = Δ&' + 𝜂((&) + 𝜂+(&) + 𝜖&' , 
Equa*on 1 

where 

Δ&' =1𝛿,(𝑔&', − 2𝑓,)
-

,./

 

Equa*on 2 

is the DGE component; 𝛿,  is the direct effect of variant 𝑙; 𝑔&',  is the genotype of sibling 𝑗 in 
family 𝑖 at variant 𝑙; and variants are assumed to be bi-allelic with frequency 𝑓,, constant across 
genera<ons, so that 𝐸8𝑔&',9 = 2𝑓,. The paternal and maternal IGE components are 
 

𝜂((&) = ∑ 𝜂,(𝑔((&), − 2𝑓,)-
,./ , and 𝜂+(&) = ∑ 𝜂,(𝑔+(&), − 2𝑓,)-

,./ ; 
 

where 𝜂,  is the (average) parental indirect gene<c effect of variant 𝑙; and 𝑔((&),  and 𝑔((&),  are, 
respec<vely, the genotypes of father and mother in family 𝑖 at variant 𝑙. We model only the 
average parental IGE here, as, for the results in this manuscript, differences between paternal 
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and maternal IGEs can be subsumed into the residual and ignored (Supplementary Note Sec<on 
3.4).  
 
AM induces a correla<on between parents’ DGE components, which we define to be:  
 

Δ((&) = ∑ 𝛿,(𝑔((&), − 2𝑓,)-
,./ , and Δ+(&) = ∑ 𝛿,(𝑔+(&), − 2𝑓,)-

,./ . 
 

We give a glossary of terms used in the paper aNer the Discussion.  
 
Equilibrium phenotypic variance 
 
We decompose the equilibrium phenotypic variance in terms of the random ma<ng variance 
decomposi<on and the equilibrium correla<ons between parents’ DGE and IGE components. 
Figure 1 shows the nota<on for the equilibrium correla<ons: the within-parent (or cis-parental) 
correla<on, 𝑟"01 , between DGE and IGE components are the same for mothers and fathers 
because the DGEs (𝛿,) and (average) IGEs (𝜂,) do not depend on the parent; similarly for the 
cross-parent (or trans-parental) correla<on, 𝑟"02 . To make the decomposi<on tractable, we 
assume that the 𝐿 causal variants segregate independently, implying they would be 
uncorrelated in a random ma<ng popula<on.  

 
Figure 1. Diagram of correla1ons between parents’ direct gene1c effect (DGE) and indirect gene1c effect (IGE) components. 
𝛥!(#) and 𝛥%(#) are the paternal and maternal DGE components with correla*on 𝑟&. 𝜂!(#) and 𝜂%(#) are the paternal and 

maternal IGE components with correla*on 𝑟'. The within-parent (or cis-parental) correla*on between DGE and IGE components 
is 𝑟&'

( , for which we use a superscript ‘c’ to denote ‘cis-parental’. The cross-parent (or trans-parental) correla*on between DGE 
and IGE components is 𝑟&'

) , for which we use a superscript ‘𝜏’ to denote ‘trans-parental’.  

The random-ma<ng variance decomposi<on is the same as given in Young et al. 2018, who 
derived it for the RDR method for es<ma<ng heritability31: 
 

Var?𝑌&'@ = 𝑣3 + 𝑣4~3 + 𝑐34 + 𝜎6!; 
Equa*on 3 

where 𝑣3 = Var?Δ&'@ = 2∑ 𝛿,!𝑓,(1 − 𝑓,)-
,./  is the random-ma<ng gene<c variance; 𝑣4~3 =

Var?𝜂((&) + 𝜂+(&)@ = 4∑ 𝜂,!𝑓,(1 − 𝑓,)-
,./  is the random-ma<ng variance due to (average) 

parental IGEs; and 𝑐34 = 2Cov?Δ&' , 𝜂((&) + 𝜂+(&)@ = 4∑ 𝛿,𝜂,𝑓,(1 − 𝑓,)-
,./  is the random-ma<ng 

variance due to covariance between DGEs and parental IGEs; and 𝜎6! = Var?𝜖&'@. 

Δp(i)

ηp(i) ηm(i)

Δm(i)
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In Supplementary Note Sec<on 3, we show that, for AM at equilibrium and in the limit as 𝐿 →
∞, 
 

Var?𝑌&'@ = 𝑣%
eq =

𝑣3
1 − 𝑟"

+
1 + 𝑟0
1 − 𝑟0

𝑣4~3 + ?𝑟"01 + 𝑟"02 @K
2𝑣4~3𝑣3

(1 − 𝑟0)(1 − 𝑟")
+ 𝜎6!. 

 
We define the equilibrium variance components:  
 

𝑣3
eq =

𝑣3
1 − 𝑟"

; 			𝑣4~3
eq =

1 + 𝑟0
1 − 𝑟0

𝑣4~3; 		𝑐34
eq = ?𝑟"01 + 𝑟"02 @K

2𝑣4~3𝑣3
(1 − 𝑟0)(1 − 𝑟")

; 

 

and the equilibrium heritability, ℎeq! =
7!
eq

7$
eq. 

 
The equilibrium phenotypic variance due to covariance between DGE and IGE components, 𝑐34

eq, 
will be non-zero when 𝑟"01 + 𝑟"02 ≠ 0. This is true even when DGEs and IGEs are uncorrelated but 
AM induces a correla<on between DGE and IGE components (𝑟"01 + 𝑟"02 ≠ 0). In other words, 
AM induces a correla<on between the DGE and IGE components even if there would be none 
under random ma<ng.  
 
In theory, it would be possible to es<mate this variance decomposi<on given es<mates of the 
random-ma<ng variance components and correla<ons between parents’ DGE and IGE 
components (Figure 1). In Supplementary Note Sec<on 3.4, we show that differences between 
maternal and paternal IGEs do not alter the equilibrium variance decomposi<on: the variance 
component due to parental IGE asymmetry is absorbed into the residual and is unchanged by 
AM. Furthermore, since proband PGI and average parental PGIs are uncorrelated with the 
component due to parental IGE asymmetry34, such asymmetries do not affect the PGI analysis 
results contained in this manuscript.  
 
If 𝑐34 ≠ 0 (DGE and IGE components are correlated under random ma<ng) then the equilibrium 
variance decomposi<on can be expressed in terms of 𝑐34  (Supplementary Note Sec<on 3.3.1): 
 

Var?𝑌&'@ =
𝑣3

1 − 𝑟"
+
1 + 𝑟0
1 − 𝑟0

𝑣4~3 +
𝑟"01 + 𝑟"02

𝑟"0
1 − 𝑟"0

2 𝑐34 + 𝜎6!. 

Equa*on 4 

In Supplementary Note Sec<on 3.3.2, we show that 
 

𝑟"01 + 𝑟"02

𝑟"0
1 − 𝑟"0

2 = 1 +
2𝑟"02

𝑟"08 	P(1 − 𝑟")(1 − 𝑟0)
, 
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where 𝑟"08 ≠ 0 is the random-ma<ng correla<on between DGE and IGE components, which 
equals the genome-wide correla<on between standardized DGEs and IGEs. This shows that AM 
will increase the magnitude of the variance due to covariance between DGE and IGE 
components provided that 

𝑟𝛿𝜂
𝜏

𝑟𝛿𝜂
0 > 0.  

 
If we assume primary phenotypic assortment, then it can be shown that (Supplementary Note 
Sec<on 3.5): 
 

𝑟" = ℎeq! 𝑟: Q1 +
𝑐3,4
4<

𝑣3
eq R1 +

𝑐3,4
4<

4𝑣3
eqST. 

 
Thus, the correla<on between parents’ DGE components can differ from 𝑟" = ℎeq! 𝑟: (the classic 
result for primary phenotypic assortment7) when there is (poten<ally AM induced) correla<on 
between DGE and IGE components. When DGE and IGE components are posi<vely correlated, 
the equilibrium correla<on between parents’ gene<c components will thus be higher than 
would be predicted using the classic result, 𝑟" = ℎeq! 𝑟:, and consequently the AM induced 
infla<on of phenotypic variance due to DGEs would be larger.   
 
Es<ma<ng heritability using realized relatedness  
 
While siblings have a relatedness coefficient of ½ in expecta<on — based on the expected 
propor<ons of the genome shared iden<cal-by-descent (IBD) from each parent — there is 
varia<on around this expecta<on due to random segrega<on of gene<c material in the parents 
during meiosis. The realized relatedness between siblings is computed from the propor<ons of 
the genome shared IBD from each parent, and therefore captures the random varia<on in 
relatedness around the expecta<on. In outbred samples, the realized relatedness between 
siblings has an approximate normal distribu<on with mean close to 0.5 and a standard devia<on 
around 0.04 (ref24,26). By examining how the phenotypic correla<on between siblings changes 
with realized relatedness, an es<mate of heritability can be obtained that is robust to 
popula<on stra<fica<on24,26. We call this method ‘sib-regression’.  
 
Here we examine how realized relatedness affects the phenotypic correla<on between siblings 
in our model with DGEs, IGEs, and AM at equilibrium. In Supplementary Note Sec<on 4, we 
show that, for a sibling pair with phenotypes (𝑌&' , 𝑌&=) and realized relatedness 𝑅&'=,  
 

Cov?𝑌&' , 𝑌&=@ = 𝑣3𝑅&'= + 𝑟"𝑣3
eq + 𝑣4~3

eq + 𝑐34
eq + Cov(𝜖&' , 𝜖&=). 

 
(This is the result for the limit as the effec<ve number of independent loci contribu<ng to the 
DGE component goes to infinity. We give results for a finite number of loci in Supplementary 
Note Sec<on 4.) This shows that varia<on in realized relatedness gives informa<on about the 
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random ma<ng variance of the DGE component, not the equilibrium variance, because the 
varia<on in realized relatedness is due to random segrega<on of gene<c material in a family 
where the correla<ons induced by AM are irrelevant.  
 
Heritability can be es<mated by a regression of 𝑌&'𝑌&=/𝑣%

eq	 onto 𝑅&'= across sibling pairs — 
where we have assumed the phenotypes have mean zero. The slope of this regression gives the 
es<mate of heritability. Assuming that the realized relatedness is uncorrelated with 𝜖&'𝜖&= — 
which would be violated when there are IGEs between siblings26 —  we show in Supplementary 

Note Sec<on 4 that the slope of the regression is ℎ?! =
def 𝑣3/𝑣%

eq, the random-ma<ng variance of 
the DGE component divided by the equilibrium phenotypic variance. The es<mand ℎ?! is smaller 
than the equilibrium heritability, ℎeq! , by a factor of (1 − 𝑟"). Thus, one could es<mate ℎeq!  by 
infla<ng es<mates of ℎ?! by a factor of 1/(1 − 𝑟").  
 

The intercept of the regression is 𝑟"ℎeq! +
7)~!
eq B1!)

eqBE[6+,6+-]		

7$
eq . This includes a term, 𝑟"ℎeq! , that will 

be non-zero when the phenotype is heritable and there is AM, even in the absence of IGEs or 
other environmental effects shared between siblings. This implies that, when there is AM, the 
intercept will give an upward biased es<mate of the propor<on of phenotypic variance 
explained by environmental effects shared between siblings24. To correct for the bias due to AM, 
one could subtract an es<mate of 𝑟"ℎeq! = F.

/GF.
ℎ?! from the intercept of the regression.   

 
Our theore<cal results for AM at equilibrium agree with Kemper at al., who argued that sib-
regression es<mates the random ma<ng gene<c variance divided by the phenotypic variance in 
the present genera<on23, which is the equilibrium phenotypic variance at equilibrium, as in our 
model/deriva<on.  Kemper et al. supported their argument with simula<ons of a single 
genera<on of AM and a theore<cal deriva<on that, although it reached the correct conclusion, 
is invalid (Supplementary Note Sec<on 4.2). Kemper et al. argued that RDR26, which is a 
generaliza<on of sib-regression to all rela<ve pair classes, also es<mates ℎ?!. Our theore<cal 
results imply that this is true since RDR — like sib-regression — uses within-family varia<on in 
realized relatedness to es<mate heritability. 
 
Although they do not use realized relatedness, classical twin studies based on MZ-DZ twin 
comparisons have also been shown to es<mate ℎ?! under the ACE model when AM is at 
equilbrium23. It is trivial to show the same result holds in our model. This implies that 
heritability es<mates from the ACE twin model, from sib-regression, or from RDR can be 
combined with es<mates of 𝑟"  to es<mate the equilibrium heritability. 
 
In the following sec<ons, we show how analysis of gene<c predictors (called polygenic indices, 
or PGIs; also called polygenic scores, or PGS) can be used to es<mate 𝑟", to adjust heritability 
es<mates for bias due to AM, and to assess evidence for parental IGEs while accoun<ng for AM.  
 
Family-based polygenic index analysis  
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Building on Kong et al.31, many studies have examined both offspring and parental PGIs as 
predictors of offspring phenotypes32,34,43. In the following sec<ons, we show how to interpret 
the results of these studies in our model.  
 
A PGI is a weighted sum of genotypes (numbers of copies of alleles) across gene<c variants: 
 

PGI&' =
1
√𝑣

1𝑤,(𝑔&', − 2𝑓,)
-

,./

; 	𝑣 = Var [1𝑤,(𝑔&', − 2𝑓,)
-

,./

\ ; 

 
where PGI&'  is the PGI of sibling 𝑗 in family 𝑖, and 𝑤,/√𝑣 is the weight of variant 𝑙. If we set 𝑤, =
𝛿,  for all loci, then PGI&' ∝ 	Δ&', as defined in Equa<on 2. In this sec<on, we assume the PGI has 
been normalized to have variance 1, i.e. the un-standardized PGI has been divided by its 
standard devia<on, √𝑣, where 𝑣 is its variance. Under random-ma<ng, 
 

𝑣 =1𝑤,!2𝑓,(1 − 𝑓,).
-

,./

 

 
We now define the paternal and maternal PGIs using the same weights: 
 

PGI((&) =
1
√𝑣

1𝑤,?𝑔((&), − 2𝑓,@;	
-

,./

PGI+(&) =
1
√𝑣

1𝑤,?𝑔+(&), − 2𝑓,@.
-

,./

 

 
As they use the same weights, the maternal and paternal PGIs have the same variance as the 
offspring PGIs under random ma<ng and under AM at equilibrium.  
 
Given parental genotypes, offspring genotypes vary due to random segrega<ons during meiosis 
in the mother and father. Furthermore, Mendelian inheritance induces an important 
rela<onship between parent and offspring PGIs. Letng 𝐺par(&) represent the genotypes of the 
parents: 
 

E[PGI&a𝐺par(&)9 = (PGI((&) + PGI+(&))/2 = PGIpar(&)/2, 
Equa*on 5 

where PGIpar(&) = PGI((&) + PGI+(&). This result holds generally, whether there is AM or not.   
 
The most common type of PGI analysis is a regression of phenotype onto PGI without 
controlling for parental PGIs (but poten<ally controlling for covariates, such as gene<c principal 
components):  

𝑌&' = 𝛽PGIPGI&' + 𝜖&' , 
Equa*on 6 
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where 𝛽 is called the ‘popula<on effect’ of the PGI as it reflects the overall associa<on of the 
PGI and phenotype in the popula<on (aNer accoun<ng for covariates).  
 
Most of the evidence for parental IGEs has derived from fitng a version of the following 
regression equa<on31,32,43: 
 

𝑌&' = 𝛿PGI	 PGI&' + 𝛼PGIPGIpar(&) + 𝜖&', 
Equa*on 7 

where 𝛿PGI is called the direct gene<c effect of the PGI, and 𝛼PGI is called the average non-
transmided coefficient (NTC), as it reflects the correla<on of offspring phenotype with the PGI 
constructed from the parental alleles not transmided to the offspring34. ONen, 𝛼PGI has been 
interpreted as reflec<ng IGEs alone, which would be true under random-ma<ng, but it can also 
reflect popula<on stra<fica<on and, as we detail below, AM34,38,39. Since offspring PGI is 
condi<onally independent of environment given parental genotypes, and E[PGI&a𝐺par(&)9 =
PGIpar(&)/2 (Equa<on 5), 𝛿PGI reflects DGEs of causal variants alone, and does not include IGEs 
or other forms of gene-environment correla<on, e.g. popula<on stra<fica<on31,34.  
 

PGI 𝑤,  𝛿PGI	  𝛼PGI 𝛽PGI 

DGE 𝛿,  P𝑣3 𝑟"08 d
𝑣4~3
2  P𝑣3 + 𝑟"08 d

𝑣4~3
2  

Average Parental 
IGE 𝜂,  𝑟"08 P𝑣3 d

𝑣4~3
2  d

𝑣4~3
2 + 𝑟"08 P𝑣3 

Popula<on 
Effect 𝛽,  

𝑣3 + 𝑐3,4/2

P𝑣3 + 𝑣4~3/2 + 𝑐3,4
 

(𝑣4~3 + 𝑐3,4)/2

P𝑣3 + 𝑣4~3/2 + 𝑐3,4
 d𝑣3 + 𝑣4~3/2 + 𝑐3,4  

Table 1. Expected regression coefficients for two-genera1on PGI analysis under random-ma1ng.  Direct effect (𝛿PGI	 ), average 
non-transmiLed coefficient (𝛼PGI), and popula*on effect (𝛽PGI) for standardized PGIs with different weight vectors, specified by 
the 𝑤. column, which gives the weight for variant 𝑙 in the un-standardized PGI. Here, we give the regression coefficients for the 
PGI standardized to have variance 1. The PGI coefficients are expressed in terms of the random-ma*ng variance components 
(Equa*on 1). The variance explained by the popula*on effect PGI under random ma*ng is (𝑣/ +

0!~#
1
+ 𝑐/,3), which is also the 

variance es*mated by GREML applied to all causal SNPs in a random ma*ng popula*on26. These results are for idealized weight 
vectors given by the true DGEs,	𝛿., average parental IGEs, 𝜂., and popula*on effects, 𝛽. = 𝛿. + 𝜂.. These results are not valid 

when weights are es*mated with noise or bias — as would be the case for real world PGIs computed from GWAS summary 
sta*s*cs — or when there is non-random ma*ng. A glossary of symbols is included a\er the Discussion.   

In Supplementary Note Sec<on 5, we show that, assuming random-ma<ng,  
 

𝛿PGI	 =
∑ 𝑤,𝛿,2𝑓,(1 − 𝑓,)-
,./

P∑ 𝑤,!2𝑓,(1 − 𝑓,)-
,./

; 𝛼PGI =
∑ 𝑤,𝜂,2𝑓,(1 − 𝑓,)-
,./

P∑ 𝑤,!2𝑓,(1 − 𝑓,)-
,./

; 	𝛽PGI =
∑ 𝑤,𝛽,2𝑓,(1 − 𝑓,)-
,./

P∑ 𝑤,!2𝑓,(1 − 𝑓,)-
,./

, 

 
where 𝛽, = 𝛿, + 𝜂,. In Table 1, for certain special values of the weight vector 𝑤,, we give 𝛿PGI	 , 
𝛼PGI, and 𝛽PGI in terms of the random-ma<ng variance components26 (Equa<on 3), and the 
random-ma<ng correla<on between DGE and IGE components, 𝑟"08 . 
 
Two-genera<on analysis of the direct gene<c effect PGI at equilibrium 
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We now give results for PGI analysis under AM at equilibrium. First, we give results for analyzing 
the true DGE PGI, as results for DGE PGIs that do not capture all the heritability can be 
expressed in terms of coefficients for the true DGE PGI. We define (Equa<on 2):  
 

Δ&' = ∑ 𝛿,?𝑔&', − 2𝑓,@-
,./ ;  

 

Δpar(&) =1𝛿,?𝑔p(&), + 𝑔+(&), − 4𝑓,@ =
-

,./

Δp(&) + Δm(&). 

 
Consider analyzing this PGI in a two-genera<on regression model: 
 

𝑌&' = 𝛿"Δ&' + 𝛼"Δpar(&) + 𝜖&' . 
Equa*on 8 

In Supplementary Note Sec<on 6, we show that, at equilibrium: 
 

𝛿" = 1;	𝛼" =
𝛼"
𝛿"

=
𝑐34
eq

2(1 + 𝑟")𝑣3
eq =

?𝑟"01 + 𝑟"02 @
(1 + 𝑟")

K
(1 − 𝑟")𝑣4~3
2(1 − 𝑟0)𝑣3

. 

Equa*on 9 

This shows that we expect the average NTC of the DGE PGI to be non-zero only when IGEs are 
present and 𝑟𝛿𝜂𝑐 + 𝑟𝛿𝜂𝜏 ≠ 0, which will almost surely be true when there is AM, even when DGEs 
and IGEs are uncorrelated. To obtain equivalent results for the true DGE PGI standardized to 

have variance 1, we mul<ply both 𝛿"  and 𝛼"  by d𝑣3
eq. Let 𝛼e"  be the average NTC for the 

standardized true DGE PGI, then 
 

2(𝛼e")! = 2𝑣3
eq𝛼"! =

SF./
0 BF./

1 T
2

(/BF.)2
(/GF.)7)~!

eq

(/BF/)
  

 
This implies that 2(𝛼e")! gives a measure propor<onal to the variance explained by parental 
IGEs, provided that 𝑟"01 + 𝑟"02 ≠ 0. In the random-ma<ng case, this will be less than 𝑣4~3 unless 
𝑟"08 = 1, i.e. unless the genome-wide correla<on between DGEs and IGEs is 1. While this 
captures part of the variance explained by parental IGEs, it does not capture the phenotypic 
variance due to covariance between DGE and IGE components. In Supplementary Note Sec<on 
6.1, we show that the propor<on of phenotypic variance explained by joint regression onto the 
parental and offspring DGE PGIs (Equa<on 8) is: 
 

VarVW+,BX.Wpar(+)Y

7$
eq = ?1 + 2(1 + 𝑟")𝛼"(1 + 𝛼")@ℎeq! . 

Equa*on 10 
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If there are no parental IGEs, or the IGE component is uncorrelated with the DGE component, 
then 𝛼" = 0, and the propor<on of variance explained by parental and offspring DGE PGIs 
would be ℎeq! . Thus, the contribu<on of parental IGEs to the variance explained by the parental 
and offspring DGE PGIs (due to both the IGE component and its covariance with the DGE 
component) is  
 

𝑣0:" =
def VarVW+,BX.Wpar(+)Y

7$
eq − ℎeq! = 2(1 + 𝑟")𝛼"(1 + 𝛼")ℎeq! . 

Equa*on 11 

Thus, the contribu<on from parental IGEs is magnified when 𝑟" > 0, i.e. when (posi<ve) AM is 
present.  
 
This shows that the true DGE PGI — which could be es<mated from family-based GWAS34,44 — 
can be used to assess the contribu<on of parental IGEs to the phenotypic variance. However, 
when the es<mated DGE PGI does not capture all the heritability and there is assorta<ve 
ma<ng, the situa<on is more complicated, and requires a different solu<on, as we outline 
below. 
 
Two-genera<on analysis of an incomplete direct gene<c effect PGI at equilibrium 
 
In real-world applica<ons, we will never have access to the true DGE PGI. Even with unbiased 
es<mates of DGEs, sampling errors due to finite sample size45 mean that any real-world DGE PGI 
will fail to capture all of the heritability. Differences in local linkage disequilibrium paderns 
and/or DGEs between training data and target data39,46,47 would further reduce the heritability 
explained by a real-world PGI. If using popula<on effect es<mates from standard GWAS — as is 
currently standard prac<ce — bias due to IGEs and improperly controlled popula<on 
stra<fica<on34 mean that such PGIs are unlikely to capture all of the heritability even as 
sampling error approaches zero. Furthermore, incomplete genotyping and/or imperfect 
imputa<on of rare variants and structural variants48–50 mean that not all relevant gene<c 
varia<on is captured by current PGIs.   
 
To accommodate the complexi<es of real-world applica<ons as best we can, we develop theory 
for a DGE PGI that explains a frac<on, 𝑘, of the heritability in a random-ma<ng popula<on. The 
model we use assumes that we include only a frac<on, 𝑘, of the independently segrega<ng 
causal variants, which are assumed to have equal frequency and equal effect size, 𝛿:  
 
PGI!"

#4 = #
$%4

∑ (𝑔!"& − 2𝑓)'(
&)* ; PGI+(!)

#4 = #
$%4

∑ (𝑔+(!)& − 2𝑓)'(
&)* ; PGI.(!)

#4 = #
$%4

∑ (𝑔.(!)& − 2𝑓)'(
&)* . 

 
We define the PGIs such that they have been standardized to have variance 1 through division 
by P𝑣=, where 𝑣= = Var?𝛿 ∑ (𝑔&', − 2𝑓)=-

,./ @, which is assumed to be the same for parent and 
offspring PGIs because we are assuming equilibrium.  
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Although this simplified model is not realis<c and does not capture all the possible ways a PGI 
may capture only a frac<on, 𝑘, of the heritability in a random-ma<ng popula<on, we show that 
the results hold under more general condi<ons through simula<ons (below).  
 
For the following sec<ons, we assume we have a sample of families where we have observed 
the phenotypes of the offspring, 𝑌&', along with the offspring and parental incomplete DGE PGIs: 
PGI&'

"-, PGI((&)
"- , PGI+(&)

"- . We denote the correla<on between maternal and paternal incomplete 
DGE PGIs to be 
 

𝑟= = Corr hPGI((&)
"- , PGI+(&)

"- i 
Equa*on 12 

We consider what we can learn from performing a two-genera<on PGI analysis using the 
incomplete DGE PGI. Specifically, consider we have performed a regression of the standardized 
offspring phenotype onto standardized offspring and parental PGIs:  
 

𝑌&'

d𝑣%
eq
= 𝛿PGI:=PGI&'

"- + 𝛼PGI:=PGIpar(&)
"- + 𝜖&' , 

Equa*on 13 

and let 𝛿jPGI:= and 𝛼kPGI:= be the resul<ng es<mates of the direct effect, 𝛿PGI:=, and average NTC, 
𝛼PGI:=, of the incomplete DGE PGI.  
 
We also consider es<ma<ng the popula<on effect of the incomplete DGE PGI, 𝛽PGI:=, by the 
following regression:  

:+,

[7$
eq
= 𝛽PGI:=PGI&'

"- + 𝜖&'. 

 
Because Cov hPGI&'

"- , PGIpar(&)
"- i = (1 + 𝑟=) at equilibrium, it is trivial to show that 

 
CovS:+,,PGI+,

.-T

[7$
eq

= 𝛽PGI:= = 𝛿PGI:= + (1 + 𝑟=)𝛼PGI:=, 

Equa*on 14 

which gives a useful connec<on between the results of one and two-genera<on PGI analyses.  
 
 
Impact of assorta<ve ma<ng on PGI analysis in the absence of indirect gene<c effects 
 
AM can induce sta<s<cal proper<es that can be confused with the influence of IGEs. In 
Supplementary Note Sec<on 7.3.1, we show that the frac<on of phenotypic variance the 
incomplete PGI explains at equilibrium in a model without IGEs is:   
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𝑅eq! = 𝛽PGI:=! = [1 + (1 − 𝑘)𝑟"(1 + 𝑟=)]𝑘ℎeq! > 𝑘ℎeq!  when 𝑟" > 0 and 𝑘 < 1. 

 
In other words, AM inflates the 𝑅! between phenotype and PGI by a factor of 1 +
(1 − 𝑘)𝑟"(1 + 𝑟=). As 𝑘 → 1, the infla<on tends to zero. This is because the infla<on is due to 
the correla<on between the PGI and the DGE component that the PGI would be uncorrelated 
with in a random-ma<ng popula<on but becomes correlated with due to AM: when 𝑘 = 1, 
there is no residual DGE component to be correlated with.  

 
Figure 2. Impact of assorta1ve ma1ng on PGI analysis. We give results for the expected regression coefficients in one- and two-

genera*on PGI analysis (Equa*ons 13 and 14) under assorta*ve ma*ng at equilibrium without indirect gene*c effects. The y-
axis gives ra*os: between the average NTC and direct effect, 𝛼5/𝛿5, in blue; and between direct and popula*on effects, 𝜌5 =
𝛿5/𝛽5, in red. We plot these ra*os as a func*on of the frac*on of heritability the PGI would explain in a random-ma*ng 

popula*on, 𝑘, on the x-axis. As these ra*os (Equa*ons 15 and 17) also depend upon the correla*on between parents’ direct 
effect components, 𝑟&, we show the ra*os as a func*on of 𝑘 (x-axis) for both 𝑟& = 0.4 (solid lines) and 𝑟& = 0.2 (dashed lines). A 

glossary of symbols is included a\er the Discussion.  

The AM-induced correla<on between the PGI and the DGE component the PGI would be 
uncorrelated with in a random ma<ng popula<on affects results from two-genera<on PGI 
analysis. Since Kong et al.31, aden<on has been given to the ra<o between direct and popula<on 
effects (𝛿PGI/𝛽PGI) for PGIs, since this measures how much apparent PGI effects ‘shrink’ when 
es<mated within-family43,51 — a sta<s<cal signature of IGEs. However, popula<on stra<fica<on 
and AM can also lead to shrinkage of PGI effects within-family33,39,43,52, implying that IGEs 
cannot be iden<fied from ‘shrinkage’ of PGI effects within-family alone.  
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In Supplementary Note Sec<on 7.3, we show that, for a PGI that would explain a frac<on 𝑘 of 
the heritability in a random ma<ng popula<on, this ra<o is 
 

𝜌= =
𝛿PGI:=
𝛽PGI:=

= 1 − (1 − 𝑘)𝑟" , 
Equa*on 15 

at equilibrium in the absence of IGEs (and no popula<on stra<fica<on, which we do not include 
in our model). This equa<on thus gives a baseline expecta<on for what ‘shrinkage’ to expect 
based purely on AM. The equa<on shows that we could expect substan<al shrinkage when 𝑘 is 
not close to 1, and 𝑟"  is substan<ally above 0 (Figure 2).  
 
Consider analysing a single variant that explains a negligible amount of the heritability, then 
𝜌= = lim=→8(1 − (1 − 𝑘)𝑟") = 1 − 𝑟". Versions of this result for a single variant has been given 
before by several authors8,28,52. The ra<o 1 − 𝑟"  gives the expected ‘shrinkage’ when es<ma<ng 
the DGE of a variant in family-based GWAS compared to es<ma<ng the popula<on effect using 
standard GWAS. This raises the possibility that 𝑟"  could be es<mated from the average 
‘shrinkage’ of DGEs compared to popula<on effects of genome-wide SNPs, assuming AM is the 
only source of shrinkage.  
 
Es<ma<ng indirect gene<c effects accoun<ng for assorta<ve ma<ng 
 
The above sec<on suggests that one way to assess evidence for IGEs while accoun<ng for AM 
would be to compute the ra<o between direct and popula<on effects for a par<cular PGI, and 
to compare this to an es<mate of 𝜌= (Equa<on 15), 𝜌k=, the ra<o that would be expected due to 
AM alone without IGEs. If the es<mated ra<o between direct and popula<on effects, 𝛿j=/𝛽j=, 
was sta<s<cally significantly different from 𝜌k=, then this would cons<tute evidence that IGEs 
(and/or other forms of gene-environment correla<on, such as popula<on stra<fica<on) are 
present.  
 
In the Methods and Supplementary Note Sec<ons 7-9, we derive a similar but more formal 
procedure for performing two-genera<on PGI analysis accoun<ng for AM (Figure 3). The inputs 
of this procedure are: an es<mate of the correla<on between parents’ incomplete DGE PGIs, 𝑟̂=; 
es<mated regression coefficients from a regression of standardized offspring phenotype onto 
standardized offspring and parental (incomplete) DGE PGIs (Equa<on 13), (𝛿j= , 𝛼k=); and an 
es<mate of ℎ?!, such as from MZ-DZ twin comparisons (ACE model), RDR, or sib-regression. 
These inputs are first used to es<mate 𝑘 = (1 − 𝑟=)𝛿=!/ℎ?!, the frac<on of heritability the PGI 
would explain in a random-ma<ng popula<on (Methods and Supplementary Note Sec<on 8). 
Es<mates of 𝑘 and 𝑟= can then be combined to es<mate 𝑟"  using a rela<onship between 𝑟"  and 
𝑟= we derive (Supplementary Note Sec<on 7.2): 
 

𝑟" =
𝑟=

𝑘 + (1 − 𝑘)𝑟=
. 
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Given 𝑟"  and ℎ?!, the equilibrium heritability is given by ℎeq! = ℎ?!/(1 − 𝑟"). The IGE of the true 
DGE PGI, 𝛼"  (Equa<on 9), can be es<mated two ways. One is based on the ra<o between direct 
and popula<on effects of the incomplete DGE PGI, which we show to be (Supplementary Note 
Sec<on 7.4):  
 

𝛿PGI:=
𝛽PGI:=

=
𝜌=

1 + (1 + 𝑟")𝛼"
. 

 
By rearranging, we obtain an expression for 𝛼": 
 

𝛼" =
𝜌= −

𝛿PGI:=
𝛽PGI:=

𝛿PGI:=
𝛽PGI:=

(1 + 𝑟")
. 

 
This equa<on matches the intui<on that if the direct to popula<on effect ra<o, "PGI:-

`PGI:-
, is smaller 

than would be predicted under a model without IGES (𝜌=), this implies 𝛼" > 0, i.e. that there is 
an IGE component posi<vely correlated with the DGE component.   
 
We then es<mate 𝛼"  using es<mates of 𝛿=,	𝛽= ,	𝑘,	𝑟" ,	and	𝜌= (Methods):		
	

𝛼k"/ =
𝜌k= −

𝛿jPGI:=
𝛽jPGI:=

𝛿jPGI:=
𝛽jPGI:=

(1 + 𝑟̂")
. 

Equa*on 16 

An alterna<ve route to es<ma<ng 𝛼"  is to use the ra<o between the average NTC and the direct 
effect of the PGI: 𝛼PGI:=/𝛿PGI:=. Kong et al. es<mated that this ra<o was 0.427 for an EA PGI, and 
used this as the basis of their argument that IGEs on EA are substan<al31. In Supplementary 
Note Sec<on 7.4, we show that: 
 

𝛼PGI:=
𝛿PGI:=

=
(1 + 𝑟")𝛼" + (1 − 𝜌=)

1 + 𝑟=
. 

Equa*on 17 

This shows that the average NTC is the sum of two components: one due to AM-induced 
correla<on with the DGE component that the PGI would be uncorrelated with under random 
ma<ng, (1 − 𝜌=)/(1 + 𝑟=); and one due to parental IGEs, (1 + 𝑟")𝛼"/(1 + 𝑟=). By 
rearrangement and subs<tu<on, we obtain: 
 

𝛼" =
[𝜌= + 𝑘𝑟"]

𝛼PGI:=
𝛿PGI:=

− (1 − 𝜌=)	

1 + 𝑟"
. 
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This yields a second sample es<mator of 𝛼": 
 

𝛼k"! =
8𝜌k= + 𝑘s𝑟̂"9

	𝛼kPGI:=
𝛿jPGI:=

− (1 − 𝜌k=)	

1 + 𝑟̂"
. 

Equa*on 18 

Although less intui<ve than the es<mator based on the ra<o between direct and popula<on 
effects (𝛼k"/, Equa<on 16), 𝛼k"! is generally to be preferred because	𝛼kPGI:= and 𝛿jPGI:= can be 
es<mated from the same regression (Equa<on 13), making it easier to compute the 
approximate sampling variance (Supplementary Note Sec<on 9). Simula<ons indicated that, 
when es<mated from the same data, 𝛼k"/ and 𝛼k"! give almost iden<cal results (Supplementary 
Table 7).  
 

 
Figure 3. Schema1c of two-genera1on PGI analysis accoun1ng for assorta1ve ma1ng. A PGI is used as an instrument in order 
to make inferences about the impact of assorta*ve ma*ng (AM) and indirect gene*c effects (IGEs) on phenotype varia*on. The 
inputs are the correla*on between parents’ observed PGIs, 𝑟5; the regression coefficients from two-genera*on PGI analysis 
(Equa*on 13); and an es*mate of ℎ61 from MZ-DZ twin comparisons (ACE model), sib-regression, or RDR. These inputs are then 
put through a series of non-linear es*ma*ng equa*ons (Methods) in order to es*mate 𝑘, the frac*on of heritability the PGI 
would explain in a random-ma*ng popula*on; 𝑟&, the correla*on between parents’ true direct gene*c effect (DGE) components; 
ℎeq1 , the equilibrium heritability (which is larger than ℎ61 when there is AM); and 𝑣':&  the propor*on of phenotypic variance 
contributed by the IGE component that is correlated with the DGE component (when a PGI constructed from unbiased DGE 
es*mates is used). A glossary of symbols is included a\er the Discussion.   

Given an es<mate of 𝛼", 𝛼k", along with an es<mate of ℎ4<!  (above), one can then es<mate the 
frac<on of phenotypic variance contributed by the IGE component that is correlated with DGE 
component, 𝑣0:"  (Equa<on 11). We es<mate this as:  
 

𝑣k0:" = 2(1 + 𝑟̂")𝛼k"(1 + 𝛼k")ℎseq! . 
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We implemented the es<ma<on procedure (Figure 3) in snipar 
(h=ps://github.com/AlexTISYoung/snipar). By inputng an es<mate of ℎ?! along with the data 
required to perform two-genera<on PGI analysis (offspring phenotypes and genotypes/PGIs, 
and observed and/or imputed parental genotypes/PGIs), snipar will es<mate 𝛿PGI:=, 𝛼PGI:=,	
𝛽PGI:= ,	𝑟=, 𝑘, 𝑟", ℎeq! , 𝜌=, 𝛼", and 𝑣0:", along with approxima<ons to their sampling variances 
(Methods and Supplementary Note Sec<on 9).  
 
Simula<on study 
 
We simulated 16 phenotypes with varying parameters using the simulate.py module in snipar 
(Methods and Supplementary Table 1). For each phenotype, we simulated the first-genera<on 
by random ma<ng. We simulated 30,000 independent families and 1,000 causal SNPs, with two 
full-sibling offspring in each family.  We simulated a DGE component that explained 50% of the 
phenotypic variance, i.e. 𝑣3/𝑣% = 0.5, in the first-genera<on. For some phenotypes, we also 
simulated a parental IGE component that explained 12.5% of the variance in the first 
genera<on, i.e. 𝑣4~3/𝑣% = 0.125. We simulated DGEs and IGEs of individual SNPs from a 
bivariate normal distribu<on. We set the correla<on between DGEs and IGEs, 𝑟"08 , to 0, 0.5, or 1. 
For each set of IGE parameters, we simulated phenotypes affected by AM of varying strengths: 
the phenotypic correla<on between parents in each genera<on was set to 0, 0.25, 0.5, and 0.75. 
In order to reach approximate equilibrium, we simulated 20 genera<ons of ma<ng aNer the 
first-genera<on produced by random ma<ng.  
 
We found a close agreement between our theore<cal results on the equilibrium phenotypic 
variance decomposi<on (Equa<on 4) and the simula<on results (Supplementary Table 1 and 
Supplementary Figure 1). Using the last two simulated genera<ons, we performed two-
genera<on PGI analysis using PGIs constructed from the true DGEs plus es<ma<on error 
(Methods and Supplementary Tables 2-5). Although the theory was derived assuming that we 
have a PGI constructed using the true DGEs as weights for a subset of causal variants, we tested 
a different scenario, in which we used the true DGEs plus es<ma<on error (as could be obtained 
from a family-based GWAS) as weights: 
 

PGI&'" =
1
√𝑣

1(𝛿, + 𝜖",)?𝑔&', − 2𝑓,@; 	𝑣 = Var[1(𝛿, + 𝜖",)?𝑔&', − 2𝑓,@
-

,./

\
-

,./

; 

 
where 𝜖",  were simulated as independent variables with 𝑁(0, 𝑣6") distribu<on. The variance of 
the es<ma<on error, 𝑣6", was set in mul<ples of the variance of the true DGEs: 0 (standardized 
true DGE PGI), 1, 10, and 100. The frac<on of heritability explained by the PGIs in a random-
ma<ng popula<on (𝑘) was thus approximately equal to 1/(1 + 𝑣6"). So, for 𝑣 = 0, 1,10,100, 
𝑘 ≈ 1, 0.5, 0.09, 0.01. 
 

https://github.com/AlexTISYoung/snipar
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Figure 4. Simula1on results for a direct gene1c effect PGI. Across 16 simulated phenotypes (Methods), we computed PGIs using 
weights equal to the true direct gene*c effects (DGEs) plus a noise term of variance equal to the variance of the true DGEs, 
simula*ng es*ma*on error. This gave a DGE PGI that explained approximately 50% of the heritability in a random-ma*ng 
popula*on (Supplementary Table 3). We performed two-genera*on PGI analysis (Methods and Figure 3) in order to es*mate a) 
𝑟&, the correla*on between parents’ true DGE components (that explain all of the heritability); b) ℎeq1 , the equilibrium heritability; 
c) 𝛼&, the indirect gene*c effect (IGE) of the true DGE PGI;  and d) the propor*on of phenotypic variance contributed by the IGE 
component that is correlated with the DGE component, 𝑣':&. Ver*cal and horizontal error bars indicate 95% confidence intervals. 
A glossary of symbols is included a\er the Discussion.   

To complete the inputs (Figure 3), we es<mated 𝑟= using the sample correla<on between the 
parents’ PGI values, and we used the true value of ℎ?! = (1 − 𝑟")ℎeq!  as the heritability input. 
We give results for 𝑣 = 1, 𝑘 ≈ 0.5 in Figure 4 and Supplementary Table 3, which shows the 
procedure produces approximately unbiased es<mates of 𝑟", ℎeq! , 𝛼", and 𝑣0:"  with accurate 
standard errors. However, while the inference procedure produces accurate results when 𝑘 ≈
0.5, and reasonably accurate results for 𝑘 ≈ 0.09 (Supplementary Figure 2 and Supplementary 
Table 4), it produces biased and unstable results when 𝑘 ≈ 0.01 (Supplementary Table 5 and 
Figure 5b). This is because, when 𝛿=, 𝛼=, and 𝑟= are close to zero, noise in the es<mates makes 
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the inference unstable since many terms in the es<ma<ng equa<ons involve ra<os of 
parameters. 
 
While the theory was derived for PGIs constructed from DGEs, most IGE analyses to date have 
used PGIs constructed from the results of standard GWAS, which es<mates ‘popula<on effects’. 
The popula<on effect of a variant 𝑙 is: 𝛽, = 𝛿, + 𝜂, + 𝑐,, where 𝑐,  represents confounding 
factors that contribute to the popula<on effect of SNP 𝑙, including from AM34. PGIs derived from 
standard GWAS also have es<ma<on error, 𝜖`, , giving: 
 

PGI&'
` =

1
√𝑣

1?𝛿, + 𝜂, + 𝑐, + 𝜖`,@?𝑔&', − 2𝑓,@; 	𝑣 = Var [1?𝛿, + 𝜂, + 𝑐, + 𝜖`,@?𝑔&', − 2𝑓,@
-

,./

\
-

,./

. 

 
Under a ‘null hypothesis’ of no IGEs or other forms of gene-environment correla<on (e.g. 
popula<on stra<fica<on), 𝛽, ≈ 𝛿,/(1 − 𝑟") (Equa<on 15 with 𝑘 = 0). This implies the 
popula<on effects and DGEs are approximately the same up to a scale factor and therefore the 
true DGE and popula<on effect PGIs are almost perfectly correlated. This implies that PGIs 
derived from standard GWAS can be used in the above procedure to test the null hypothesis 
that there are no IGEs or confounding factors other than AM.  
 

 
Figure 5. Inferring indirect gene1c effects (IGEs) using popula1on effect and noisy direct gene1c effect (DGE) PGIs. a) We 
compare inferences of 𝑣':&  when using a ‘popula*on effect PGI’ (Supplementary Table 6), i.e. a PGI constructed using weights 
equal to the sum of the DGE and IGE of the SNP plus es*ma*on error, and a DGE PGI, i.e. a PGI constructed using DGEs plus 
es*ma*on error (Supplementary Table 3). We show results for phenotypes with non-zero IGEs (Supplementary Table 6). Here, the 
es*ma*on error was set to be equal to the variance of the sum of the true DGEs and IGEs, such that the PGIs captured around 
one half (or a liLle less) of the heritability in a random-ma*ng popula*on. b) Across all 16 simula*ons, es*mates of 𝑣':&  when 
using a DGE PGI that explains only around 1% of the heritability in a random-ma*ng popula*on (Supplementary Table 5). 
Ver*cal and horizontal error bars indicate 95% confidence intervals.  

To inves<gate how PGIs constructed from standard GWAS perform in our procedure, we 
constructed ‘popula<on effect PGIs’ as such: 
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where 𝜖`,  are i.i.d. 𝑁(0, 𝑣6`) random variables with 𝑣6`  set to mul<ples of Var,(𝛿, + 𝜂,). (We 
ignore the confounding due to AM in the popula<on effects since this should be approximately 
equal to infla<ng 𝛿, + 𝜂,  by a constant scale factor across variants.)  
 
We compared inference of 𝑣0:"  using DGE and popula<on effect PGIs with 𝑘 ≈ 0.5 in Figure 5a 
(Supplementary Tables 3 and 6). While 𝑣0:"  as inferred from a popula<on effect PGI cannot be 
interpreted as the propor<on of phenotypic variance contributed by the IGE component that is 
correlated with the DGE component, our results show that the popula<on effect PGI can detect 
the presence of IGEs when the DGE PGI cannot (Figure 5a). This is because there are cases when 
the DGE and IGE components are uncorrelated or weakly correlated, so a PGI constructed from 
DGEs does not detect the presence of IGEs. For example, if DGEs and IGEs are uncorrelated and 
there is no AM, the DGE and IGE components are uncorrelated, and 𝛼" = 0, so the DGE PGI 
does not detect IGEs, even though they are present.  However, because IGEs contribute to 
popula<on effects, the IGEs contribute to the weight vector of the popula<on effect PGI, 
enabling the popula<on effect PGI to detect the presence of IGEs even when DGE and IGE 
components are uncorrelated (Table 1). A limita<on of this analysis is that it ignores the 
poten<al impact of popula<on stra<fica<on confounding on PGIs derived from standard GWAS.  
 
Analysis of PGIs for height and educa<onal adainment 
 
We performed two-genera<on PGI analysis (Figure 3) for height and EA using results from 
Okbay et al. 2022 (ref43) (Methods and Table 2). Okbay et al. es<mated the ra<o between PGI 
direct and popula<on effects and the correla<on between parents’ PGIs using PGIs constructed 
from standard GWAS es<mates of ‘popula<on effects’. In addi<on to the results reported in 
Okbay et al., we also need an es<mate of ℎ?!. We considered two different es<mates of ℎ?! for 
height: one from a meta-analysis of twin studies using the ACE model42, and one from applying 
RDR to Icelandic data26. For educa<onal adainment (EA), we used an es<mate from a meta-
analysis of twin studies53. We did not use an RDR or sib-regression es<mate as the only available 
es<mates23,26 lacked sufficient precision for reliable inference (Methods and Supplementary 
Table 7).  
 
Our results using the RDR es<mate of ℎ?! for height show no evidence for IGEs, and the direct to 
popula<on effect ra<o (𝛿PGI:=/𝛽PGI:= = 0.910, S.E.=0.009) is sta<s<cally indis<nguishable from 
the predic<on due to AM alone (without IGEs): 𝜌= = 0.886 (S.E.=0.028). We es<mated that the 
correla<on between parents’ DGE components is 𝑟" = 0.208 (S.E.=0.041), around double that 
for the observed PGI. Using this es<mate of 𝑟", we can adjust the RDR es<mate of heritability to 
give an es<mate of the equilibrium heritability of height: ℎeq! = 0.699 (S.E.=0.075). However, if 
we use the twin es<mate of ℎ?!, we obtain an implausible result that there are IGEs that are 
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nega<vely correlated with DGEs. This implausible result could be due to overes<ma<on of 
heritability by twin studies26, which leads to underes<ma<on of 𝑘 and therefore a predic<on of 
the ra<o between direct and popula<on effects of the PGI that is too low. An alterna<ve (and 
not mutually exclusive) explana<on is that the es<mate of 𝑟= is too high. This could happen 
when there are confounding factors captured by the height PGI (which is derived from standard 
GWAS) that are correlated between parents, thereby infla<ng the correla<on between parents’ 
PGIs beyond what would be expected for a DGE PGI (with no confounding) that explains the 
same frac<on of heritability.  

 
Height (RDR) Height (Twin) 

Educa4onal   
A8ainment (Twin) 

Parameter Es4mate S.E. Es4mate S.E. Es4mate S.E. 

𝛿PGI:5/𝛽PGI:5 0.910 0.009 0.910 0.009 0.556 0.020 

𝑟5 0.106 0.020 0.106 0.020 0.175 0.020 

ℎ61 0.554 0.044 0.729 0.018 0.400 0.024 

𝑘 0.452 0.038 0.346 0.014 0.069 0.007 

𝑟&  0.208 0.041 0.256 0.045 0.755 0.035 

ℎ3:1  0.699 0.075 0.979 0.066 1.631 0.281 

𝜌5 0.886 0.028 0.833 0.032 0.297 0.037 

𝛼&  -0.022 0.025 -0.068 0.026 -0.265 0.029 

𝑣':&  -0.036 0.045 -0.155 0.070 -1.114 0.289 

Table 2. Two genera1on PGI analysis for height and educa1onal aMainment. We applied two-genera*on PGI analysis (Figure 3) 
to the results of Okbay et al.43 for height and educa*onal aLainment (EA) PGIs. Okbay et al. gave es*mates of the ra*o between 
direct and popula*on effects of the PGIs, 𝛿PGI:5/𝛽PGI:5, and of the correla*on between parents’ PGIs, 𝑟5. To complete the inputs 
to two-genera*on PGI analysis, we input es*mates of ℎ61 from RDR or from the twin ACE model. We used two different es*mates 
of ℎ61 for height: one from a meta-analysis of twin studies42, and one from applying RDR to Icelandic data26. For EA, we used an 
es*mate of ℎ61 from a meta-analysis of twin studies using the ACE model53. By applying a series of non-linear es*ma*ng 
equa*ons (Figure 3 and Methods), we obtained es*mates of the frac*on of heritability the PGI would explain in a random-
ma*ng popula*on, 𝑘; the correla*on between parents’ direct gene*c effect (DGE) components, 𝑟&; the equilibrium heritability, 
ℎeq1 = ℎ61/(1 − 𝑟&); the ra*o between direct and popula*on effects of the PGI that would be expected due to assorta*ve ma*ng 
in the absence of indirect gene*c effects (IGEs), 𝜌5; the IGE of the true DGE PGI (that captures all of the heritability), 𝛼&; and the 
contribu*on to phenotypic variance from by IGE component that is correlated with the DGE, 𝑣':&. A glossary of symbols is 
included a\er the Discussion.   

For EA, we es<mated that 𝑟" = 0.755 (S.E.=0.035). This derives from the fact that the es<mated 
correla<on between parents’ PGIs was 𝑟= = 0.175 (S.E.=0.020), and the PGI was es<mated to 
explain only around 7% of the heritability in a random-ma<ng popula<on. This very high 
es<mate of 𝑟"  results in an impossibly high es<mate of equilibrium heritability (being 
sta<s<cally significantly above 1) and an inference that there are strong IGEs nega<vely 
correlated with DGEs. Two plausible explana<ons for these implausible results are: 
overes<ma<on of heritability by twin studies26, and confounding in the EA GWAS summary 
sta<s<cs34 that inflates the correla<on between parents’ PGI values. The second phenomenon 
implies that part of the correla<on between parents’ PGIs is due to confounding factors that are 
correlated between parents — such as social class — in addi<on to DGEs, leading to a 
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correla<on that is higher than would be obtained from a DGE PGI that explains the same 
frac<on of heritability.   
 
Discussion 
 
In this manuscript, we give a decomposi<on of the phenotypic variance (Equa<on 4) under 
assorta<ve ma<ng (AM) at equilibrium for a phenotype affected by both direct gene<c effects 
(DGEs) and indirect gene<c effects (IGEs). We achieve this by a generaliza<on of the method of 
Crow and Felsenstein11 to a phenotype affected by both DGEs and IGEs. The equilibrium 
variance is expressed in terms of the random-ma<ng variance components as defined by Young 
et al. in rela<on to the RDR method of es<ma<ng heritability26 (Equa<on 1) and the equilibrium 
correla<ons between parents' DGE and IGE components (Figure 1). We connected our results to 
es<ma<on of heritability using random varia<on in realized relatedness between siblings24, ‘sib-
regression’. We demonstrated theore<cally that sib-regression es<mates the random-ma<ng 
gene<c variance divided by the equilibrium phenotypic variance, ℎ?!, in agreement with Kemper 
et al.23.  
 
An important unsolved problem in human gene<cs is how to interpret the results from re- 
gression models including both proband (phenotyped individual) and parental PGIs37,39,43. The 
expected regression coefficient on the proband PGI, 𝛿PGI, is called the direct effect of the PGI, 
and the coefficient on the parental PGI (sum of maternal and paternal PGIs) is called the 
average non-transmided coefficient (NTC), 𝛼PGI. We show that, under random ma<ng and for 
certain special weight vectors, 𝛿PGI and 𝛼PGI are simple func<ons of the random-ma<ng 
variance components (Table 1), with 𝛼PGI reflec<ng IGEs. When there is AM, the interpreta<on 
of the regression coefficients is more complicated. If a PGI would explain only a frac<on 𝑘 of the 
heritability in a random ma<ng popula<on, then 𝛼PGI captures — in addi<on to IGEs — the AM-
induced correla<on of the PGI with the DGE component that the PGI would be uncorrelated 
with in a random ma<ng popula<on (Equa<on 17).  
 
We derived theore<cal results for PGI analysis under AM at equilibrium. We showed that, when 
assorta<ve ma<ng is strong and 𝑘 ≪ 1, 𝛼PGI/𝛿PGI can be substan<al even in the absence of IGEs 
(Figure 2). Many studies have es<mated how much PGI regression coefficients ‘shrink’ within-
family31,43,44,51, i.e. how the coefficient on the proband PGI changes when controlling for 
parental or sibling PGIs. In our framework, this ‘shrinkage’ corresponds to the ra<o between 
direct and popula<on effects, 𝛿PGI/𝛽PGI. Our results show that substan<al shrinkage can be 
expected when AM is strong, even in the absence of IGEs (Figure 2). These results argue against 
naïve interpreta<ons of sta<s<cally significant es<mates of 𝛼PGI or substan<al ‘shrinkage’ of PGI 
regression coefficients within-family as demonstra<ng the influence of IGEs.  
 
In 2018, Kong et al. presented analyses of an educa<onal adainment (EA) PGI in Icelandic data, 
and es<mated that 𝛼PGI/𝛿PGI = 0.427. Kong et al. recognized that 𝛼PGI could reflect the AM-
induced correla<on of alleles not transmided from parents to offspring with transmided alleles. 
Kong et al. proposed a technique to adjust for the bias, concluding that the bias was small and 
therefore that IGEs on EA were substan<al. However, the technique proposed by Kong et al. 
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relied upon strong assump<ons, including that there had been only one genera<on of 
assorta<ve ma<ng and that direct and indirect gene<c effects were perfectly correlated. 
Furthermore, Kong et al. did not account for uncertainty in input parameters or in their 
adjustment.  
 
We develop a procedure (Figure 3 and Methods), implemented in snipar, that accounts for AM 
by combining the results of two-genera<on PGI analysis with a family-based heritability 
es<mate (ℎ?!) and an es<mate of the correla<on between parents’ PGIs (𝑟=). When applied to 
PGIs constructed from DGE es<mates, this produces es<mates of the correla<on between 
parents’ DGE components,  𝑟", the equilibrium heritability, ℎeq! , and the contribu<on to 
phenotypic variance from the IGE component that is correlated with the DGE component, 𝑣0:". 
Simula<ons show that this gives approximately unbiased es<mates along with accurate 
standard errors when all the input parameters are es<mated precisely (Methods and 
Supplementary Tables 2-7). Unlike the procedure developed by Kong et al., our procedure does 
not assume perfectly correlated DGEs and IGEs.  
 
The theory underlying the method is derived for a PGI constructed using DGEs as weights. 
However, almost all inves<ga<ons of IGEs have been performed using PGIs constructed using 
‘popula<on effect’ es<mates from standard GWAS31,43,51. The advantage of such PGIs over PGIs 
constructed from DGE es<mates from family-based GWAS is greater sta<s<cal power due to 
larger sample sizes and the fact that ‘popula<on effects’ capture both DGEs and IGEs. Under a 
‘null model’ of AM but no IGEs, DGEs and popula<on effects of variants should be 
approximately perfectly correlated, implying that popula<on effect PGIs can be used in our 
procedure (Figure 3) to test a null hypothesis that there are no IGEs (or other confounding 
factors beyond AM). Simula<ons indicate that popula<on effect PGIs can detect the influence of 
IGEs in situa<ons when DGE PGIs do not (Figure 4), since they will do so even when DGE and IGE 
components are uncorrelated.  
 
We applied our method to results on EA and height popula<on effect PGIs from Okbay et al.43 
(Table 2).  The height PGI results — using an es<mate of ℎ?! = 0.554 from applying RDR to 
Icelandic data54 — indicated no evidence for IGEs on height and gave an es<mate of the 
equilibrium heritability of height of ℎeq! = 0.699 (S.E. = 0.075). Our es<ma<on procedure 
produced nonsensical results when applied to the EA PGI, including that the equilibrium 
heritability is above 1. The equilibrium heritability es<mate is so high because our es<mate of 
the correla<on between parents’ DGE components is so high: 𝑟" = 0.755 (S.E.=0.035). This 
derives from the fact that the correla<on between the parents’ observed PGIs is high, 𝑟= =
0.175 (S.E.=0.020), even though the PGI is es<mated to explain only around 7% of the 
heritability in a random-ma<ng popula<on.  
 
Our procedure for es<ma<ng the correla<on between parents’ underlying DGE components, 𝑟", 
accounts for PGI-environment correla<on — such as from IGEs and popula<on stra<fica<on — 
although not for confounding in the GWAS summary sta<s<cs used to construct the PGI. This is 
an advantage over a recently proposed structural equa<on model, rgensi13, which uses siblings 
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and their in-laws in combina<on with a PGI to es<mate 𝑟". Our es<mate of 𝑟"  for EA was higher 
than from rgensi applied to an EA PGI in the Norwegian Mother, Father and Child Cohort Study 
(MoBa), which es<mated 𝑟" = 0.37 (95% confidence interval: [0.21,0.67]). The primary reason 
for this difference is that the rgensi model does not es<mate the effect of the EA PGI within-
family — which is how our method accounts for PGI-environment correla<on — and thus 
obtained a much higher es<mate for the frac<on of heritability explained by the PGI: 25% (95% 
confidence interval: [12%,42%]).  
 
While the simula<on results indicated that using a popula<on effect PGI in our procedure 
produces reasonably accurate results, the simula<ons did not consider the impact of popula<on 
stra<fica<on confounding in popula<on effect es<mates. We hypothesize that confounding 
factors in the EA GWAS have inflated the correla<on between parents’ EA PGIs beyond that 
which would be expected for a DGE PGI (without confounding) that explains the same amount 
of heritability. This would have the effect of overes<ma<ng the correla<on between parents’ 
DGE components and therefore the equilibrium heritability.   
 
This manuscript has focused on es<ma<ng a consequence of cultural/ver<cal transmission from 
parents to offspring, the IGEs that are induced when the parental phenotypes affec<ng the 
offspring through the environment are themselves heritable. Previous research on es<ma<on of 
cultural/ver<cal transmission includes the cultural transmission model of Cloninger, Rice, and 
Reich18, extended twin and family designs (ETDFs) such as the ‘stealth’ and ‘cascade’ models, 
and the structural equa<on model of Balbona et al.33. Unlike previous research, our results do 
not rely upon a par<cular model of assorta<ve ma<ng. A difference from previous models is 
that we do not model the total contribu<on of ver<cal/cultural transmission from parents to 
offspring, only the heritable component of the parental phenotype that influences offspring 
through the environment. While modelling the total contribu<on of ver<cal/cultural 
transmission is important for predic<ng phenotypic correla<ons between rela<ves, it is less 
important for PGI analyses and es<ma<on of IGEs.  
 
Our method does not make any assump<ons about the parental phenotype through which 
cultural/ver<cal transmission from parents to offspring operates and can model arbitrary 
correla<ons between DGEs and IGEs. This is in contrast to most previous research — except for 
the model from Cloninger, Rice, and Reich, which, while flexible, cannot separately iden<fy 
gene<c and cultural transmission when fit to phenotypic correla<ons between rela<ves19. ETFDs 
can separately iden<fy gene<c and cultural transmission, but these models generally assume 
ver<cal/cultural transmission operates through an observed phenotype. The same is true of the 
structural equa<on model of Balbona et al., which is the only other method that uses PGIs. 
 
This manuscript provides a general theore<cal framework for understanding the joint impact of 
AM and IGEs on phenotypic variance components, heritability es<ma<on, and PGI analyses. As 
more gene<c data on families becomes available, we will obtain more powerful family-based 
GWAS summary sta<s<cs, enabling us to apply our es<ma<on procedure to DGE PGIs. We will 
also obtain more precise heritability es<mates from sib-regression24 and RDR54. Together, these 
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will enable applica<on of the theore<cal results and methodology developed here to quan<fy 
the impact of IGEs and AM on phenotype varia<on.  
 
Glossary 
 

𝛿,  Direct gene<c effect (DGE) of variant 𝑙 
𝜂,  Average parental indirect gene<c effect (IGE) of variant 𝑙 
𝑔&',  Genotype of sibling 𝑗 in family 𝑖 at variant 𝑙. Variants are assumed to be bi-allelic, 

with genotypes coun<ng the number of copies of the allele (0, 1, or 2) with 
frequency 𝑓,  

𝑔((&),  Genotype of the father in family 𝑖 at variant 𝑙 
𝑔+(&),  Genotype of the mother in family 𝑖 at variant 𝑙 
𝑔par(&),  Combined parental genotype for family 𝑖 at variant 𝑙: 𝑔par(&), = 𝑔((&), + 𝑔+(&),  
𝑌&'  Phenotype of sibling 𝑗 in family 𝑖. 

Δ&', Δ((&), 
Δ+(&) 

Direct gene<c effect (DGE) component of sibling 𝑗 in family 𝑖, the father in family 
𝑖, and the mother in family 𝑖: 

Δ&' = ∑ 𝛿,(𝑔&', − 2𝑓,)-
,./ ;	Δ((&) = ∑ 𝛿,(𝑔((&), − 2𝑓,)-

,./ ;																															 
Δ+(&) = ∑ 𝛿,(𝑔+(&), − 2𝑓,)-

,./ . 
Δpar(&) The combined parental DGE component: 	

Δpar(&) = Δ((&) + Δ+(&). 
𝜂((&), 𝜂+(&) Paternal and maternal indirect gene<c effect (IGE) components: 

𝜂((&) = ∑ 𝜂,(𝑔((&), − 2𝑓,)-
,./ , and 𝜂+(&) = ∑ 𝜂,(𝑔+(&), − 2𝑓,)-

,./ . 
𝑟"  Correla<on between parents’ DGE components:  

𝑟" = Corr(Δ((&), Δ+(&)). 
𝑟0  Correla<on between parents’ IGE components:  

𝑟" = Corr(𝜂((&), 𝜂+(&)). 
𝑟"01  Within-parent correla<on between DGE and IGE components:  

𝑟"01 = Corr?𝜂((&), 𝛿((&)@ = Corr?𝜂+(&), 𝛿+(&)@. 
𝑟"02  Between-parent correla<on between DGE and IGE components:  

𝑟"01 = Corr?𝜂((&), 𝛿+(&)@ = Corr?𝜂+(&), 𝛿((&)@. 
𝑣3 Random-ma<ng variance of DGE component:  

𝑣3 = Var?Δ&'@ = 2∑ 𝛿,!𝑓,(1 − 𝑓,)-
,./ . 

𝑣4∼3 Random-ma<ng variance of parental IGE component:  
𝑣4∼3 = Var?𝜂((&) + 𝜂+(&)@ = 4∑ 𝜂,!𝑓,(1 − 𝑓,)-

,./ . 
𝑐34  Random-ma<ng variance due to covariance between DGE and IGE components:  

𝑐34 = 2Cov?𝛿&' , 𝜂((&) + 𝜂+(&)@ = 4∑ 𝛿,𝜂,𝑓,(1 − 𝑓,)-
,./ . 

𝑣%
eq Equilibrium phenotypic variance. 
𝑣3
eq Equilibrium variance of DGE component: 𝑣3

eq = 7!
/GF.

. 

ℎeq!  Equilibrium heritability: ℎeq! = 𝑣3
eq/𝑣%

eq 
𝑣4~3
eq  Equilibrium variance of parental IGE component: 𝑣4~3

eq = /BF/
/GF/

𝑣4~3 



 27 

𝑐34
eq  Equilibrium variance due to covariance between DGE and IGE components: 

𝑐34
eq = ?𝑟"01 + 𝑟"02 @d

!7)~!7!
(/GF/)(/GF.)

. 

𝑟𝛿𝜂0  Random-ma<ng correla<on between DGE and IGE components.  
𝑅&'=  Realized relatedness between siblings 𝑗 and 𝑘 in family 𝑖.  
ℎ?! Within-family heritability es<mand at equilibrium (as from MZ-DZ twin 

comparisons, relatedness disequilibrium regression, and sib-regression): 
ℎ?!	=	𝑣3/𝑣%

eq = (1 − 𝑟")ℎeq!  
PGI&' 	 Polygenic index of sibling 𝑗 in family 𝑖 
PGIpar(&) Combined parental polygenic index in family 𝑖:  

PGIpar(&) = PGI((&) + PGI+(&), where PGI((&) and PGI+(&) are, respec<vely, the 
paternal and maternal PGIs 

𝛿PGI	 , 𝛼PGI	  Direct effect and average non-transmided coefficient (NTC) of a PGI defined by 
the regression: 𝑌&' = 𝛿PGI	 PGI&' + 𝛼PGIPGIpar(&) + 𝜖&'. 

 
𝛽PGI	  Popula<on effect of PGI defined by the regression: 𝑌&' = 𝛽PGI	 PGI&' + 𝜖&'. 
𝛼"  Average non-transmided coefficient of the true direct gene<c effect PGI, i.e. of 

the DGE component, defined by the regression: 
𝑌&' = Δ&' + 𝛼"Δpar(&) + 𝜖&'  

𝑣0:"  The contribu<on to phenotypic variance from the IGE component correlated 
with the DGE component (both its variance and variance due to covariance with 

the DGE component): 
𝑣0:" = 2(1 + 𝑟")𝛼"(1 + 𝛼")ℎeq!  

PGI!"
#4 Variance-standardized direct effect PGI that explains a frac<on 𝑘 of the 

heritability in a random-ma<ng popula<on — for example, with 𝛿, = 𝛿 and  𝑓, =
𝑓 for all 𝑙, 

PGI!"
#4 = #

$%4
∑ (𝑔!"& − 2𝑓)'(
&)* ,  𝑣= = Var?∑ (𝑔&', − 2𝑓)=-

,./ @. 

𝛿PGI:=, 
𝛼PGI:=  

The direct effect and average non-transmided coefficient of a DGE PGI that 
explains a frac<on 𝑘 of the heritability in a random-ma<ng popula<on, defined 

by a regression with phenotype and PGI standardized to have variance 1:  
:+,

[7$
eq
= 𝛿PGI:=PGI&'

"- + 𝛼PGI:=PGIpar(&)
"- + 𝜖&'. 

𝛽PGI:= The popula<on effect of a DGE PGI that explains a frac<on 𝑘 of the heritability in 
a random-ma<ng popula<on, defined by a regression with phenotype and PGI 

standardized to have variance 1:  
:+,

[7$
eq
= 𝛽PGI:=PGI&'

"- + 𝜖&'. 

𝑟= The correla<on between parents’ DGE PGIs that explain a frac<on 𝑘 of the 
heritability in a random-ma<ng popula<on: 

𝑟= = Corr hPGI((&)
"- , PGI+(&)

"- i. 
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𝜌= The ra<o between direct and popula<on effects of a DGE PGI that explains a 
frac<on 𝑘 of the heritability in a random ma<ng popula<on in a model without 

indirect gene<c effects:	𝜌= =
"PGI:-
`PGI:-

= 1 − (1 − 𝑘)𝑟" . 
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Data Availability 
 
Simulated populations (genotype and phenotype data) will be made available for download on 
publication of the final version of this manuscript.  
 
Code Availability 
 
The code for performing simula<ons of phenotypes affected by DGEs, parental IGEs, and AM is 
available as a command line script (simulate.py) in snipar 
(hdps://github.com/AlexTISYoung/snipar). The code for performing two-genera<on PGI analysis 
accoun<ng for AM (Figure 3) is available as a command line script (pgs.py) in snipar. We provide 
a tutorial on simula<ng data and performing two-genera<on PGI analysis here: 
hdps://snipar.readthedocs.io/en/latest/simula<on.html 
 
The code for the specific simula<ons and PGI analyses described in this paper is available here: 
hdps://github.com/AlexTISYoung/snipar/tree/simulate.  
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Methods 
 
Es<ma<ng the frac<on of heritability a PGI would explain in a random-ma<ng popula<on 
 
In real-world applica<ons, we do not know 𝑘, the frac<on of heritability the PGI would explain 
in a random-ma<ng popula<on. In Supplementary Note Sec<on 8, we show that  
 

𝑘 =
(1 − 𝑟=)𝛿=!

ℎ?!
. 

Equa*on 19 

To es<mate 𝑘, consider that we have unbiased and sta<s<cally independent es<mates of 𝑟= , 
given by 𝑟̂=; 𝛿=, given by 𝛿j=; and ℎ?! = 𝑣3/𝑣%

eq, given by ℎs?!. The es<mate of ℎ?! could come from 
sib-regression, RDR, or from the ACE twin model. In Supplementary Note Sec<on 8, we propose 
a bias-corrected es<mator of 𝑘, 
 

𝑘s =
(1 − 𝑟̂=)?1 − 𝑧̂?

G!@ h𝛿j=! − Var?𝛿j=@i

ℎs?!
, 

Equa*on 20 

where 𝑧̂? =
cd<
2

[Var(cd<
2)
.  

 
Es<ma<ng the correla<on between parents’ DGE components and equilibrium heritability 
 
In order to make inferences about the impact of assorta<ve ma<ng on the DGE component, we 
need to es<mate  
 

𝑟" = Corr?PGI((&)" , PGI+(&)" @, 
 
the correla<on between the parents’ DGE components. We es<mate 𝑟"  by (Supplementary Note 
Sec<on 7.2): 
 

𝑟̂" =
𝑟̂=

𝑘s + (1 − 𝑘s)𝑟̂=
, 

Equa*on 21 
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with 𝑘s as defined above. Provided that the es<mators of 𝑘 and 𝑟= are consistent, this es<mator 
of 𝑟"  is consistent. However, the es<mator is biased, and becomes unstable when the es<mates 
of 𝑘 and 𝑟= are noisy, or when the denominator 𝑘 + (1 − 𝑘)𝑟= is close to zero (Supplementary 
Table 7).  
 
As shown above, ℎeq! = ℎ?!/(1 − 𝑟"), which implies one can obtain an es<mate of ℎeq!  by 
combining an es<mate of ℎ?! with an es<mate of 𝑟": 
 

ℎseq! =
ℎs?!

1 − 𝑟̂"
. 

 
Es<ma<ng the ra<o between direct and popula<on effects due to AM 
 
To es<mate what the ra<o between direct and popula<on effects of a PGIs would be under a 
model with AM at equilibrium but without IGEs, one can combine 𝑘 and 𝑟"  as es<mated above 
(Equa<ons 20 and 21): 
 

𝜌k= = 1 − ?1 − 𝑘s@𝑟̂" . 
Equa*on 22 

Parameter es<mate bias and sampling error es<ma<on 
 
Since the parameters are es<mated using a series of non-linear equa<ons, we expect the 
es<mators to be biased even when the input parameter es<mates are themselves unbiased. 
Furthermore, standard errors are approximated using the Delta method (Supplementary Note 
Sec<on 9), which can be inaccurate when the input parameters are noisy. We simulated input 
parameter data emula<ng that which could be obtained from performing two-genera<on PGI 
analysis using either 10,000 or 50,000 independent trios along with a sta<s<cally independent 
and unbiased es<mate of ℎ?! (Supplementary Note Sec<on 10). We found that parameter 
es<mates were approximately unbiased and standard errors were accurate when all input 
parameters were es<mated precisely (Supplementary Table 7), i.e. the ra<o between the true 
parameter value and its standard error was greater than around 3. When, for example, the 
es<mate of ℎ?! was noisy and/or 𝑘 was small, parameter es<mates could be substan<ally biased 
and standard errors inaccurate.  
 
Simula<on of popula<ons and phenotypes 
 
We simulated 16 phenotypes with varying parameters using the simulate.py module in snipar 
(Supplementary Table 1). Each phenotype was simulated by first simula<ng 60,000 independent 
individuals at 1,000 causal SNPs. SNP minor-allele frequencies (MAFs), 𝑓,, were simulated from a 
distribu<on with density propor<onal to 1/𝑓,, ranging from 𝑓, = 0.05 to 𝑓, = 0.5. We chose this 
distribu<on since MAFs are expected to have a distribu<on propor<onal to 1/𝑓 for a random-
ma<ng popula<on of constant effec<ve size55. For each SNP 𝑙, the genotype of each individual 
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was drawn independently from a Binomial(2, 𝑓,) distribu<on. The 60,000 individuals were then 
randomly paired into 30,000 parent-pairs. For each parent pair, we simulated meiosis, with 
independent segrega<on between SNPs, to produce one male and one female (full-sibling) 
offspring. To simulate the DGE and IGE components in this first offspring genera<on produced 
by random-ma<ng, we drew DGEs and IGEs of individual SNPs independently from a bivariate 
normal distribu<on:  
 

!𝛿!𝜂!
$~	𝑁 ()00+ , -

1	𝑟"#$

𝑟"#
$ 	1

01, 

 
where 𝑟"08  was set to 0, 0.5, or 1 depending upon the simula<on. The DGE and IGE components 
were then scaled to have the desired variance: 
 

Δ&' = K
0.5
𝑣"

1 𝛿,

/888

,./

?𝑔&', − 2𝑓,@;	 

 

𝜂((&) + 𝜂+(&) = K
𝑣4~3
𝑣0

1 𝜂,

/888

,./

?𝑔par(&), − 2𝑓,@; 

 
where  
 

𝑣" = VarQ1 𝛿,

/888

,./

?𝑔&', − 2𝑓,@T ;	𝑣0 = VarQ1 𝜂,

/888

,./

?𝑔&', − 2𝑓,@T ; 

 
and 𝑣4~3 was set to 0.125 or 0 depending on the simula<on. The phenotype of sibling 𝑗 in 
family 𝑖 was constructed as: 
 

𝑌&' = Δ&' + 𝜂((&) + 𝜂+(&) + 𝜖&' , 
 
where 𝜖&'  were simulated as independent random variables with 𝑁(0, 𝜎6!) distribu<on. The 
variance of the residuals, 𝜎6!, was set such that the overall phenotypic variance in the first 
genera<on produced by random-ma<ng was 1: 
 

𝜎6! = 1 − ?𝑣3 + 𝑣4~3 + 𝑐34@ = 1 − �𝑣3 + 𝑣4~3 + 𝑟"08 d2𝑣3𝑣4~3�. 

 
This implies that the heritability in the random-ma<ng popula<on was 0.5 for all phenotypes. 
For phenotypes with IGEs, the propor<on of variance explained by parental IGEs was 0.125, and 
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the propor<on of variance explained by covariance between DGEs and IGEs was 𝑐34 =
𝑟"08 √0.125 ≈ 0, 0.177, 0.354	for 𝑟"08 = 0, 0.5, 1.  
 
Subsequent genera<ons were produced by random-ma<ng or AM. AM was simulated by 
matching males and females into parent-pairs according to their rank on a noisy observa<on of 
their phenotype value: 
 

𝑍((&) = 𝑌((&) + 𝑢((&); 	𝑍+(&) = 𝑌+(&) + 𝑢+(&); 
 
where 𝑢((&) and 𝑢+(&) were simulated as independent random variables with distribu<on 
𝑁(0, 𝜎am! ). The noise level 𝜎am!  was set such that Corr?𝑌((&), 𝑌+(&)@ ≈ 𝑟% in each genera<on, 

which is achieved when 𝜎am! = � /
F$
− 1�𝑣%, where 𝑣% is the phenotypic variance in the parental 

genera<on. For each set of IGE parameters, we performed simula<ons with different strengths 
of AM: 𝑟% = 0, 0.25, 0.5, 0.75. We performed 20 genera<ons of random (𝑟% = 0) or assorta<ve 
ma<ng (𝑟% > 0), recording the phenotype values and true variance components in each 
genera<on. We retained the genotypes of the final two genera<ons in order to perform PGI 
analyses.  
 
 


