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Supplementary Figure 1 

Association signal of the additive-variance (AV) test for simulated phenotypes with different parameters. 

The expected –log10 (P value) of the AV test for different additive and log-linear variance effects of the test locus is indicated by 
shading. Phenotypes were simulated for 100,000 unrelated individuals (Methods). The test locus had frequency 0.05. To make this plot 
comparable to Fig. 1, we used the same set of additive effects. As in Fig. 1, the strength of the additive effect is parameterized by the 
amount of variance explained, h

2
, if the allele frequency is 0.5. Here the allele frequency is 0.05, so the actual variance explained is 

0.19 times the variance explained when the allele frequency is 0.5. The log-linear variance effect is indicated on the y axis and 
corresponds approximately to the proportional change in phenotypic variance per allele. We have highlighted two regions of parameter 
space: the area inside the green lines is where the association signal is stronger under the AV test than under the additive test, and the 
area inside the yellow lines is where the AV test is genome-wide significant (P < 5 × 10

–8
) but the additive test is not.  



 
 

 

Supplementary Figure 2 

Comparison of association signal for the additive-variance (AV) and additive tests for different sample sizes. 

The association signal when testing for both additive and log-linear variance effects (AV test) compared to testing for only an additive 
effect (additive test) in simulations. The y axis gives the expected log ratio (base 10) of the P value from the additive test to the AV test 
for different variance effects of the test SNP (x axis), with values above zero indicating a stronger signal from the AV test. The 
simulations were performed for sample sizes of 10,000 (red), 50,000 (green), and 100,000 (blue), indicated with the different colored 
curves. The log ratio is plotted as a crossed box if the expected P value from the additive-variance test would pass the standard 
genome-wide significance threshold of 5 × 10

–8
, and it is plotted with a triangle if neither of the expected P values from the two tests 

would pass the significance threshold. 



 
 

 

Supplementary Figure 3 

Relationship between additive and variance effects from GIANT meta-analyses. 

Estimated additive (x axis) and variance (y axis) effects on BMI are plotted for all genome-wide loci, shaded in proportion to the 
negative log10 (P value) for an additive effect, up to a maximum of negative log10 (5 × 10

–8
), the conventional boundary for genome-wide 

significance. The additive effects are taken from Locke et al. (Nature 518, 197–206, 2015), and the variance effects are taken from 
Yang et al. (Nature 490, 267–272, 2012). Because of the mean–variance relationship of untransformed BMI, any locus with an additive 
effect is expected to have a variance effect, even after inverse-normal transformation. The red line has slope 0.1071, determined by 
robust regression of genome-wide variance effects on additive effects, with weights proportional to the inverse square of the standard 
error of the estimated variance effects. 
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Supplementary Figure 4 

Relationship between estimated leptin effect and estimated dispersion effect on BMI. 

Estimated leptin effect (s.d. change in leptin per allele) (x axis) and dispersion (y axis) effects on BMI are plotted for the top 100 
approximately independent SNPs ranked by evidence for a leptin effect (Methods). The leptin effects are taken from Kilpeläinen et al. 

(Nat. Commun. 7, 2016), and the dispersion effects are taken from our analysis of the UK Biobank. The red line gives the estimated 

expected dispersion effect for a given leptin effect (Methods). 

 



general variance effect
log-linear variance effect 0.01 0.02 0.03 0.04 0.05

0.01 -0.13 0.71 2.06 3.81 6.37
0.02 -0.42 0.43 1.74 3.67 6.17
0.03 -0.56 0.19 1.53 3.53 5.76
0.04 -0.73 0.06 1.53 3.34 5.78
0.05 -0.82 0.00 1.31 3.29 5.74

Supplementary Table 1: Relative power of two degree of freedom variance test to log-linear variance
effect test. Expected differece between -log10(p-value) from the 2 degree of freedom variance test, which
includes both log-linear and general variance effects, and the test for a log-linear variance effect alone. Values
were estimated from 1000 independent simulations for each pair of effects (Methods). Values above zero indicate
a stronger expected association signal from the 2 degree of freedom test, whereas negative values indicate a
stronger expected signal under the test for a log-linear variance effect alone.

SNP AV αv AVD αv

rs1538749 -0.016 0.017
rs1801282 0.022 0.022
rs900400 0.020 0.021

rs10787472 -0.015 -0.016
rs2303223 -0.015 -0.016
rs1421085 0.027 0.030
rs10423928 0.021 0.023

Supplementary Table 5: Effect of fitting dominance effects on log-linear variance effect estimates.
We compare the log-linear variance effects (αv) in Table 1, estimated from the AV model, to log-linear variance
effects estimated from the AVD model (Supplementary Note). The AVD model fits additive and dominance
effects on the mean of the phenotype, in addition to a log-linear variance effect. We fitted AVD models in the
combined related and unrelated samples. We used the same covariates as in the main analysis and the same
random effects as used for the related sample (Methods).
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1 Hierarchy of models for mean and variance effects

Assuming the phenotype (Y ) distribution is normal conditional on the genotype (G), the
most general model relating genotype to phenotype allows for the distribution conditional
on each genotype at the locus to be any normal distribution:

MG : Y |G = g ∼ N (µg, σ
2
g). (1)

To test for association between genotype and phenotype, one could compare the likelihood
of model MG to the null model,

M0 : Y |G = g ∼ N (µ, σ2). (2)

giving a likelihood ratio test on four degrees-of-freedom, which has been previously suggested[1].

Figure 1: Nested hierarchy of models. The hierarchy builds from the null model (M0 –
no mean or variance effects) to the general model (MG – arbitrary mean and variance effects).
Effects are added successively at each level of the hierarchy (additive, log-linear variance, domi-
nance, and general variance) with the model including all of the effects below it indicated on the
right hand side. The overall height of the bar can be seen as the log-likelihood ratio test statistic
comparing the general model (MG) to the null model (M0), with the heights of the components
giving the corresponding log-likelihood ratio test statistics for the specified effects.

While model MG can capture any mean and variance effects of a locus, it is possible
to fit simpler models that capture mean and variance effects. We introduce a nested
hierarchy of models (Figure 1) that allows us to decompose the log-likelihood ratio of
model MG to the null model into components that give evidence for different mean and
variance effects. From this hierarchy, simpler tests can be devised to improve power.

Most genetic association studies fit a model that only allows for an additive effect.
The first model above the null model in our hierarchy is the additive model:

MA : Y |G = g ∼ N (µ+ αg, σ2), (3)
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where µ is the location parameter for the mean, and α is the additive effect of the genetic
variant.

We now seek to introduce a variance effect that is analogous to the additive effect on
the mean. Because the variance is always positive, one cannot use a linear model, which
is unbounded; instead, we use a log-linear model. Let σ2

g = Var(Y |G = g). This model
has the form

log (σ2
g) = µv + αvg, (4)

where µv corresponds to the scale of the variance, and αv is termed the log-linear variance
effect of the locus. The next model in our hierarchy incorporates a log-linear variance
effect in addition to an additive effect:

MAV : Y |G = g ∼ N (µ+ αg, exp (µv + αvg)), (5)

which we call the additive-variance model or AV model for short.
We add a dominance effect to this model to allow for non-linearity in the relationship

between the conditional means and the number of copies of an allele, giving:

MAVD : Y |G = g ∼ N (µg, exp (µv + αvg)). (6)

Similarly, we add a general variance effect to allow for non-linearity in the relationship
between the conditional log-variances and the number of copies of an allele, which takes
us to MG. The log-likelihood ratio between MG and M0 can therefore be decomposed as
the sum of the log-likelihood ratio test statistics for each of the mean and variance effects:

2[l(MG|y, g)− l(M0|y, g)] = 2[l(MG|y, g)− l(MAVD|y, g)]+ (7)

2[l(MAVD|y, g)− l(MAV|y, g)] + 2[l(MAV|y, g)− l(MA|y, g)] + 2[l(MA|y, g)− l(M0|y, g)].

The four components individually give evidence for additive (MA vs. M0), log-linear
variance (MAV vs. MA), dominance (MAVD vs. MAV), and general variance (MG vs.
MAVD) effects, which is illustrated in Figure 1.

1.1 Functional form of variance effect for an interacting locus

If the variance effects of loci involved in interactions follow an approximate log-linear
form, then a test that includes the log-linear variance effect but not the general variance
effect should be more powerful. We now show that this is the case in a simple interaction
model between the additive effect of a genetic variant G and an environmental variable
E, although the same arguments would apply to interactions with a genetic variant. The
model for the phenotype, Y , is

Y = G+ E + γGE + ϵ, (8)
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where G is the number of copies of an allele at a locus, E is an environmental variable,
and ϵ is independent noise with variance σ2

ϵ .
The variance conditional on G = g is

Var(Y |G = g) = σ2
ϵ + (1 + γg)2Var(E) (9)

= (σ2
ϵ +Var(E)) + 2Var(E)γg +Var(E)γ2g2 (10)

= (σ2
ϵ +Var(E)) + 2Var(E)γg +O(γ2g2). (11)

Therefore the conditional variance is a linear function of g up to a correction factor
that is proportional to the square of the interaction effect size. Given that the effect
sizes of common variants for complex traits in humans are generally small relative to the
variance of the trait, the quadratic term is generally going to be too small to detect at
current sample sizes. This also applies to the log-conditional variance. If we assume that
(σ2

ϵ +Var(E)) = 1, then

log(Var(Y |G = g)) = log(1 + 2Var(E)γg +O(γ2g2)) (12)

= 2Var(E)γg +O(γ2g2). (13)

This implies that for the effect sizes of common loci on complex traits, a log-linear vari-
ance model should be accurate, unless the interaction model involves strongly non-linear
functions of the genotype.

2 Relation of test statistics to mutual information

The mutual information between two random variables is a general measure of their
dependence which is zero if and only if the two variables are independent, unlike linear
correlation. It measures the amount of information that is shared between observations of
the variables. The mutual information between a continuous phenotype Y and a genetic
variant G is

I(Y ;G) = H(Y )−H(Y |G); (14)

where H(Y ) is the differential entropy of the phenotype Y ,

H(Y ) = −
∫ ∞

−∞
f(y) log(f(y))dy, (15)

where f(y) is the density function of the phenotype; and H(Y |G) is the conditional
entropy of Y given G,

H(Y |G) = EG[H(Y |G = g)], (16)

where H(Y |G = g) is the entropy of Y given that G takes a particular value, g.
We show that, in the infinitesimal genetic model, the likelihood ratio test statistic

comparing MG to M0 at the maximum likelihood parameter estimates is an estimator of
the mutual information between Y and G, I(Y ;G). The models are as defined in the
main text.
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2.1 General likelihood ratio test statistic

To derive the maximum likelihood of the data under MG, we parameterise the model as:

Y |G = g ∼ N (µg, σ
2
g), (17)

where µg = E[Y |G = g] and σ2
g = Var(Y |G = g).

If there are ng out of n genotypes in category g, and ygi is the ith phenotypic observation
in category g, then

2l(MG|y, g) = −n ln(2π)−
2∑

g=0

ng ln(σ
2
g)−

2∑

g=0

ng∑

i=1

(ygi − µg)2

σ2
g

. (18)

This implies that the maximum likelihood estimators are

µ̂g =
1

ng

ng∑

i=1

ygi; σ̂
2
g =

1

ng

ng∑

i=1

(ygi − µ̂g)
2. (19)

Let l̂ be the value of the log-likelihood evaluated at the maximum likelihood estimator,
then

2l̂(MG|y, g) = −n ln(2π)−
2∑

g=0

ng ln(σ̂
2
g)− n. (20)

For the null model, where ȳ is the overall sample phenotype mean,

2l̂(M0|y, g) = −n ln(2π)− n ln(σ̂2)− n; σ̂2 =
1

n

2∑

g=0

ng∑

i=1

(ygi − ȳ)2. (21)

Therefore,

2[l̂(MG|y, g)− l̂(M0|y, g)] = n ln(σ̂2)−
2∑

g=0

ng ln(σ̂
2
g). (22)

2.2 Maximum likelihood estimator of the mutual information

We now derive the mutual information between a genotype and a continuous phenotype
in the infinitesimal genetic model with Gaussian error[2]. In the infinitesimal model, the
unconditional distribution of Y is normal:

Y ∼ N (µ, σ2). (23)

The differential entropy of Y is therefore H(Y ) = 0.5 ln(2πeσ2). The mutual information
between Y and G, I(Y ;G), can be expressed as

I(Y ;G) = H(Y )− EG[H(Y |G = g)]. (24)
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Under the infinitesimal genetic model, the conditional distribution Y |G = g is also normal
with variance σ2

g . Therefore

EG[H(Y |G = g)] = 0.5EG[ln(2πeσ
2
g)]. (25)

The mutual information is therefore

I(Y ;G) =H(Y )−H(Y |G) = 0.5 ln(2πeσ2)− 0.5EG[ln(2πeσ
2
g)]; (26)

=0.5 ln(σ2)− 0.5
2∑

g=0

P(G = g) ln(σ2
g). (27)

If we estimate the mutual information with the maximum likelihood estimators of the
parameters, this gives

2nÎ(Y ;G) = n ln(σ̂2)−
2∑

g=0

ng ln(σ̂
2
g) = 2[l̂(MG|y, g)− l̂(M0|y, g)]. (28)

We have shown that the maximum likelihood estimator of the mutual information
between a genotype and a phenotype in the infinitesimal genetic model is proportional to
a general likelihood ratio test for dependence, which is on four degrees of freedom. There-
fore, when there is no association, the asymptotic distribution of the maximum likelihood
estimator of the mutual information between genotype and phenotype is (2n)−1χ2

4. This
can be seen as a case of the known relationship between mutual information and log-
likelihood ratio test statistics in parametric models[3].

The mutual information between a genotype and phenotype is zero if and only if they
are independent. We have therefore shown that, under the infinitesimal genetic model
with Gaussian residual error, the likelihood ratio test comparing MG to M0 will, for all
fixed significance levels greater than zero and less than one, have power to detect an
association that tends to 100% with sample size if and only if Y and G are dependent.

3 The Heteroskedastic Linear Model

All of the models in the above hierarchy can be incorporated into a class of models called
heteroskedastic linear models, which allow for an arbitrary vector of covariates to influence
the residual variance of the response. Similar models and algorithms have a long history
in the fields of heteroskedastic regression models[4] and econometrics.

Consider a phenotype Y with multivariate normal distribution:

Y ∼ N (Xα, D), (29)

for some diagonal matrix D. A natural and simple way to model heteroskedasticity is to
use a log-linear model. We can thereby model the diagonal elements of D as

Dii = exp(Viβ), → log(Dii) = Viβ, i = 1, . . . , n; (30)
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where Vi is a vector of v covariates measured for observation i, and β is a [v× 1] vector of
coefficients which models the linear change in the log-residual-variance with that covariate
vector. We can arrange the vectors of covariates Vi, i = 1, . . . , n, into a design matrix for
the residual variance, V , of dimension [n× v]. We can then express D as

D = exp(diag(V β)), (31)

where diag(V β) is the diagonal matrix with diagonal entry i equal to Viβ, and exp(diag(V β))
is the matrix exponential of the diagonal matrix diag(V β). A column of 1′s models the
scale of the residual variance. Alternatively, without a column of 1′s in V , one could
express D as

D = σ2 exp(diag(V β)), (32)

which makes clear the effect of changing an element of V is to scale the residual variance
up or down by some factor that depends on β.

The heteroskedastic linear model is therefore

Y ∼ N (Xα, exp(diag(V β))). (33)

3.1 Inference algorithm

We give the inference steps first, referencing the relevant equations where necessary, with
detailed derivations in the relevant subsections. The approach we take is to optimise over
the profile likelihood, Lprof(β) = L(α̂β, β), where α̂β is the value of α that maximises the
likelihood for a particular β, the solution to (39).

1: αOLS = (XTX)−1XTy. {Initialise α}
2: set β̂∗ to the solution to (42) with α = αOLS. {Initialise β}
3: Find β̂ = argmax

β
Lprof(β) using the L-BFGS-B algorithm, with β̂∗ as the initial value.

4: Find α̂ as the solution to (39) for β = β̂.
5: Compute the inverse Fisher Information Matrix (50) at (α, β) = (α̂, β̂) to obtain

standard error estimates.

The gradients and Fisher Information Matrix used are derived below.

3.2 Likelihood

For convenience, instead of the full likelihood, we work with

L(α, β|y,X, V ) = 2 logN (y|X, V,α, β) + n log(2π), (34)

where N (y|X,V,α, β) is the multivariate normal density of the heteroskedastic linear
model at y given X, V,α, β. Therefore, if yi is the ith observation of the phenotype and
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Xi is the ith row of X,

L = L(α, β|y,X, V ) = −
n∑

i=1

Viβ −
n∑

i=1

(yi −Xiα)
2 exp(−Viβ). (35)

3.3 Gradient

For notation for the first derivative of a scalar function L of a [k× 1] vector x, we express
the first (partial) derivative in terms of xT :

∂L

∂xT
=

[
∂L

∂x1
, . . . ,

∂L

∂xk

]
is [1× k]. (36)

This has the advantage of writing the linear approximation from the Taylor series of the
scalar function as

L(x) ≈ L(x0) +
∂L

∂xT
(x− x0). (37)

3.3.1 With respect to mean effects

∂L

∂αT
= 2(y −Xα)TD−1X (38)

This implies the MLE for α, α̂ must satisfy the linear system:

XTD−1Xα̂ = XTD−1y, (39)

for a given β.

3.3.2 With respect to variance effects

∂L

∂βT
=

n∑

i=1

((yi −Xiα)
2 exp(−Viβ)− 1)Vi (40)

If we assume that |Viβ| is small ∀i, then

∂L

∂βT
≈

n∑

i=1

[(yi −Xiα)
2(1− Viβ)− 1]Vi (41)

If we set this approximation to zero, we can solve a linear system for an approximate
MLE for β, β̂∗:

V Tdiag(e2)V β̂∗ =
n∑

i=1

[(yi −Xiα)
2 − 1]Vi, (42)

where e2 is the element-wise square of the residuals: e2i = (yi −Xiα)2.

9



3.4 Second derivative and asymptotic covariance

The second derivative of L with respect to α is

∂2L

∂α∂αT
= −2XTD−1X. (43)

With respect to β, it is

∂2L

∂β∂βT
= −

n∑

i=1

(yi −Xiα)
2 exp(−Viβ)V

T
i Vi (44)

= −V T δV, (45)

where δ is a diagonal matrix with diagonal element δii = (yi −Xiα)2 exp(−Viβ). Delta is
positive semi-definite ∀β as δii ≥ 0 ∀β, implying that −L is a convex function of β.

To complete the Hessian of the log-likelihood, we need

∂2L

∂α∂βT
= −2

n∑

i=1

(yi −Xiα) exp(−Viβ)X
T
i Vi (46)

= −2XTdiag((y −Xα) ◦ exp(−V β))V, (47)

where (y −Xα) ◦ exp(−V β) is the element-wise product of (y −Xα) and exp(−V β).
Therefore the Hessian of the log-likelihood with respect to (α, β) is

H =

[
−XTD−1X −XTdiag((y −Xα) ◦ exp(−V β))V

−V Tdiag((y −Xα) ◦ exp(−V β))XT −V T δV/2,

]
(48)

where we have divided by 2 to make it correspond to the true log-likelihood, not L.
The negative expectation of the Hessian, the Fisher Information Matrix, is therefore

− E[H] =

[
XTD−1X 0

0 V TV/2

]
, (49)

because E[δii] = exp(−Viβ)E[(yi − Xiα)2] = 1 ∀ i, and E[(y − Xα)] = 0. Therefore the
inverse of the information matrix is

I((α, β))−1 =

[
(XTD−1X)−1 0

0 2(V TV )−1

]
. (50)

This matrix will be invertible as long as X and V are of full column rank, which is also
enough to ensure that the negative log-likelihood is asymptotically strictly convex, so that
the maximum likelihood solutions are unique. Therefore, the asymptotic covariance of
the maximum likelihood estimator of (α, β) is given by the inverse Fisher Information
Matrix if X and V are of full column rank.

10



4 The heteroskedastic linear mixed model

We first consider a linear mixed model which allows for heteroskedasticity in both the
random effects and the residual error:

Y = Xα + Zγ + ϵ; (51)

where X is the [n× c] design matrix for the fixed effects, α; Z is the [n× l] design matrix
for the random effects, γ; and ϵ is the residual error vector. We define the covariance
matrices:

H = Cov(γ); and D = Cov(ϵ). (52)

We are interested in modelling the heteroskedasticity in both the random effects and
the residual error. We model the heteroskedasticity in the residual error as in the previous
section:

D = exp(diag(V β)). (53)

The l random effects will in general have different variances, and the difference in
variance between different random effects may depend on known covariates. If the ran-
dom effects represent allelic substitution effects on a phenotype, we might expect non-
synonymous coding variants to contribute more to the phenotypic variance than synony-
mous coding variants. In random effects models, heteroskedasticity is usually modelled
by considering a partition of the l random effects into k discrete categories, with each
random effect in each category having equal variance. This results in

ZHZT =
k∑

j=1

σ2
jZjZ

T
j . (54)

While this can model heteroskedasticity coming from discrete, non-overlapping categories,
it cannot model heteroskedasticity that follows continuous variables or multiple, overlap-
ping variables.

The log-linear variance model offers greater flexibility in modelling the heteroskedas-
ticity in the random effects. We consider uncorrelated random effects, so that H is
diagonal:

H = exp(diag(Wλ)), (55)

where W is a [l × w] design matrix for the log-variance of the random effects, with
coefficient vector λ.

One disadvantage of this model is that it becomes impossible to test the hypothesis
that a particular category of random effects contributes nothing to the variance, as a
zero contribution to the variance corresponds to a coefficient in λ of negative infinity. If
the random effects represent different allele substitution effects, however, this may not
matter, as all variants can be expected to ‘contribute’ a small amount to the phenotypic
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variance due to population stratification and confounding with shared environment. The
interpretation of the coefficients in λ for particular covariates then becomes a variance
contribution above or below the background level, which may be a more meaningful
question than whether there is any contribution above zero.

Assuming that the random effects and the residual error are Gaussian, this gives

Y |X,Z,α, β,λ ∼ N (Xα, ZHZT +D); (56)

D = exp(diag(V β)); H = exp(diag(Wλ)). (57)

In the empirical analyses and software implementation, we consider a simplification of
this with H = h2I.

5 Efficient inference for the low-rank heteroskedastic
linear mixed model

5.1 Algorithm overview

We implement the algorithm in Python using NumPy for linear algebra operations. Fa-
cilities for defining heteroskedastic linear mixed models and finding maximum likelihood
estimates of parameters are provided in the Python package HLMM, which is freely avail-
able on an MIT license. We impute missing observations in the random effects matrix,
Z, with the relevant column mean. We analyse only those individuals with complete
observations of all the other model variables. We note that our approach has similarities
to computational approaches previously used in general linear mixed models[5].

Let θ = (β, h2) be the vector of variance parameters of the simplified model with
H = h2I. To fit the simplified model, we optimise over the profile likelihood, Lprof(θ) =
L(α̂θ, θ), where α̂θ is the value of α that maximises the likelihood for a particular θ, the
solution to (72).

1: Input an initial guess for h2, h2
0. {Initialise h2}

2: Find β̂HLM , the maximum likelihood estimate of β in the model without the random
effects, by application of algorithm in Section 3.1. {Initialise β}

3: Initialise θ as θ0 = (β̂HLM , h2
0).

4: Use the L-BFGS-B algorithm to find the θ̂ that maximises Lprof(θ), using θ0 as the
initial value. The likelihood and its gradient are computed using the expressions
derived below.

5: Find α̂, the α that maximises L(α, θ̂).
6: Estimate standard errors from the negative inverse of a numerical approximation to

the Hessian of the log-likelihood at (α̂, β̂, ĥ2).

For each chromosome, we first fit a null model using a user input initial guess for h2,
and we use the resulting maximum likelihood estimate for h2 as the initial guess for h2

for all locus specific models.
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5.1.1 Overall complexity

The overall time complexity for the computation of the likelihood and gradients is

O(nl2 + l3 + ncl + cl2 + nc2 + c3 + nv + lw). (58)

The overall space complexity is

O(nl + l2 + nc+ c2 + nv + lw). (59)

Both the time and space complexity are linear in n when the other parameters are fixed.

5.2 Computation of the likelihood in O(n) Operations

As D is not proportional to the identity matrix, a rotation defined by the eigenvectors of
Z does not diagonalise the system. However, the likelihood and its derivative can still be
computed in O(n) by taking advantage of the structure of the covariance of Y , which is
a diagonal matrix plus a low rank matrix.

Let
Cov(Y ) = Σ = ZHZT +D, (60)

then the log-likelihood is

l = −n

2
log(2π)− 1

2
ln |Σ|− 1

2
(y −Xα)TΣ−1(y −Xα) (61)

Instead of maximising l, we equivalently maximise L = 2l + n log(2π):

L = − ln |Σ|− (y −Xα)TΣ−1(y −Xα). (62)

To naively compute the likelihood, one needs the inverse of Σ, computation of which
requires O(n3) operations. By application of the Woodbury Matrix Identity, the inverse
of Σ can be reduced to the inverse of D, which is diagonal, plus a low rank correction:

Σ−1 = D−1 −D−1Z(H−1 + ZTD−1Z)−1ZTD−1. (63)

Let Λ = H−1 + ZTD−1Z, then we also have, by the Matrix Determinant Lemma,

log |Σ| = log |Λ|+ log |H|+ log |D| (64)

log |Σ| = log |Λ|+
l∑

j=1

Wjλ+
n∑

i=1

Viβ. (65)

Therefore,

L =−
n∑

i=1

Viβ −
n∑

i=1

(yi −Xiα)
2 exp(−Viβ)−

l∑

j=1

Wjλ (66)

− log |Λ|+ [ZTD−1(y −Xα)]TΛ−1[ZTD−1(y −Xα)] (67)
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This can be computed in O(nl2 + l3) operations by precomputing the [l × 1] vector

r = ZTD−1(y −Xα). (68)

The likelihood can thereby be expressed as

L =−
n∑

i=1

Viβ −
n∑

i=1

(yi −Xiα)
2 exp(−Viβ)− (69)

l∑

j=1

Wjλ− log |Λ|+ rTΛ−1r,

where the first line is the likelihood for the diagonal system without the random effect,
and the second line is the contribution to the likelihood of the random effects. The
computation is dominated by calculation of Λ in O(nl2) operations and its inverse and
determinant in O(l3) operations.

5.3 Efficient computation of the maximum likelihood estimator
of the fixed effects

The derivative of the log likelihood with respect to α is

∂L

∂αT
= 2(y −Xα)TD−1X − 2(y −Xα)TD−1ZΛ−1ZTD−1X (70)

= 2(y −Xα)T [D−1X −D−1ZΛ−1ZTD−1X] (71)

To find the MLE, we equate the derivative to zero and solve for α. We get that the MLE
for α, α̂ must satisfy the linear system:

[XTD−1X −XTD−1ZΛ−1ZTD−1X]α̂ = XTD−1y −XTD−1ZΛ−1ZTD−1y (72)

XTD−1X can be computed in O(nc2) operations; XTD−1Z is a [c× l] matrix which can
be computed in O(ncl) operations; so assuming that Λ−1 has already been computed, and
that [XTD−1X−XTD−1ZΛ−1ZTD−1X] is full rank, α̂ can be computed in O(nc2+ncl+
cl2 + c3) operations.

5.4 Derivative with respect to variance parameters

In Appendix A, we derive the derivatives of the likelihood with respect to the variance
parameters. We give the results here.
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5.4.1 Derivative with respect to λ

∂L

∂λT
=

l∑

j=1

[(Λ−1
jj + Γjj) exp(−Wjλ)− 1]Wj; Γ = Λ−1rrTΛ−1. (73)

Computing this gradient requires computation of Γ in O(l3) operations, then an O(lw)
operation. It is therefore linear in the number of heteroskedasticity parameters for the
random effect, w.

5.4.2 Derivative with respect to β

∂L

∂βT
=

n∑

i=1

(ki exp(−Viβ)− 1)Vi, (74)

where k is a function of Λ, X, Z, D, and the residuals. To compute k requires O(nl2)
operations, then to complete the gradient computation requires an O(nv) operation, so
the gradient computation is linear in the number of log-linear variance parameters.

6 Detecting dispersion effects

6.1 Dispersion effects

Consider a phenotype Y and a bi-allelic genetic variant Gl, then the effect of the genotype
on the mean of Y is captured by the conditional means:

E[Y |Gl = g] = µlg, g = 0, 1, 2. (75)

Here the subscript l indicates the particular genetic variant examined. Furthermore, the
effect of the genotype on the variance of Y is captured by the conditional variance:

Var[Y |Gl = g] = σ2
lg, g = 0, 1, 2. (76)

If the effect of the genotype on the phenotypic variance can be explained by the mean-
variance relation of the phenotype distribution, then, for some function h,

Var[Y |Gl = g] = h(µlg), g = 0, 1, 2. (77)

This relationship between genotype and variance can be removed (approximately) by a
variance stabilising transform, η,

Var[η(Y )|Gl = g] ≈ 1; g = 0, 1, 2; where η(x) =

∫
dx√
h(x)

. (78)
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We aim to detect changes in phenotypic variance that cannot be explained by a change
in mean with genotype and are approximately invariant under transformations of the
phenotype, which we term ‘dispersion effects’. If the conditional variances are, for some
function ∆l,

Var[Y |Gl = g] = h(µlg)∆l(g), g = 0, 1, 2. (79)

where ∆l(g) is not a function of µlg, then the conditional variances of a transformed
phenotype τ(Y ), where τ is a differentiable function, are

Var[τ(Y )|Gl = g] ≈ h(µlg)[τ
′(µlg)]

2∆l(g), g = 0, 1, 2. (80)

The relationship between the genotype and conditional variances of τ(Y ) is not removed
because ∆l(g) is not a function of the conditional mean, µlg. The function ∆l(g) can
therefore be taken to represent the ‘dispersion effect’ of the genotype on the phenotype.
We consider a log-linear functional form for the dispersion effect of a genotype: ∆l(g) =
edl(g−2fl), where dl is the log-linear dispersion effect and fl is the allele frequency.

Our variance model is therefore,

Var[Y |Gl = g] = h(µlg)e
dl(g−2fl), g = 0, 1, 2. (81)

Transformation of the phenotype by a function τ , to a first-order approximation, affects
only the mean-variance relation, and not the log-linear dispersion effect:

Var[τ(Y )|Gl = g] ≈ hτ (µlg)e
dl(g−2fl), g = 0, 1, 2, (82)

where hτ (µlg) = h(µlg)[τ ′(µlg)]2.

6.2 Mean and variance effects after transformation

Assuming that there is a linear relation between phenotypic mean and genotype for the
untransformed phenotype, Y , then µlg = µ + al(g − 2fl), where al is the additive effect
of the genotype on the phenotypic mean. The conditional means of the transformed
phenotype are:

E[τ(Y |Gl = g)] ≈ τ(µlg) + τ ′′(µlg)σ
2
lg/2, g = 0, 1, 2. (83)

Assuming that the additive effect on the untransformed phenotype is small, so that O(a2l )
terms can be ignored,

τ(µlg) ≈ τ(µ) + τ ′(µ)al(g − 2fl). (84)

Assuming that the dispersion effect is also small, so that O(d2l ) terms can be ignored, we
have

τ ′′(µlg)σ
2
lg ≈ τ ′′(µ)h(µ) + [(τ ′′′(µ)h(µ) + τ ′′(µ)h′(µ))al + τ ′′(µ)h(µ)dl](g − 2fl). (85)
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Therefore,

E[τ(Y |Gl = g)] ≈ µτ + aτ l(g − 2fl) + τ ′′(µ)h(µ)dl(g − 2fl)/2, g = 0, 1, 2, (86)

where µτ = τ(µ) + τ ′′(µ)h(µ)/2 is the approximate mean of the transformed phenotype,
and

aτ l = [τ ′(µ) + (τ ′′′(µ)h(µ) + τ ′′(µ)h′(µ))/2]al. (87)

The additive effect on the transformed phenotype, αl, is therefore

αl ≈ aτ l + τ ′′(µ)h(µ)dl/2 (88)

This shows that a component of the additive effect on the transformed phenotype is
due to the dispersion effect on the untransformed phenotype, with the magnitude of this
component increasing with the magnitude of the second derivative of the transformation
function at the untransformed phenotype mean.

Assuming that h is differentiable and ignoring O(a2l ) terms:

log(Var[τ(Y )|Gl = g]) ≈ log(hτ (µ)) +
h′
τ (µ)

hτ (µ)
al(g − 2fl) + dl(g − 2fl), g = 0, 1, 2. (89)

Therefore the log-linear variance effect on the transformed phenotype is

αvl ≈ ravaτ l + dl, (90)

where

rav =
h′
τ (µ)

hτ (µ)[τ ′(µ) + (τ ′′′(µ)h(µ) + τ ′′(µ)h′(µ))/2]
. (91)

The log-linear dispersion effect is therefore

dl ≈
(

2

2− ravτ ′′(µ)h(µ)

)
(αvl − ravαl). (92)

In practice, unless there is a strong relationship between mean and variance effects after
transformation (large rav) and the transformation function is highly non-linear around
the phenotypic mean (large τ ′′(µ)),

dl ≈ αvl − ravαl. (93)

This suggests dispersion effects can be estimated from estimates of αvl, αl, and rav.
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6.3 Estimating dispersion effects

To ensure test statistics are properly calibrated, and that the sampling distributions of
additive and log-linear variance effects are uncorrelated, phenotypes are inverse-normally
transformed. For large samples from continuous phenotypes, inverse-normal transforma-
tion corresponds closely to transformation by a differentiable function τ (Appendix B).
For all genetic variants l = 1, . . . , L without large phenotypic effects,

τ(Y )|Gl = g ∼ N
(
µτ + αl(g − 2fl), hτ (µlg)e

dl(g−2fl)
)
. (94)

This is true because, although the transformation function τ is specified to ensure nor-
mality of Y , rather than Y |Gl = g, if the phenotypic distribution function is only altered
slightly by conditioning on Gl, then τ(Y )|Gl = g should also be approximately normally
distributed. (Note that this would not be true for genetic loci with very large phenotypic
effects, where the residuals would no longer be normal[6]).

Let τ ′′(µ)h(µ)/2 = k. By fitting the heteroskedastic linear model to estimate additive
(αl) and log-linear variance effects (αvl), asymptotically

[
α̂l

α̂vl

]
∼ N

([
aτ l + kdl
ravaτ l + dl

]
,

[
Var(α̂l) 0

0 Var(α̂vl)

])
, (95)

where Var(α̂l) and Var(α̂vl) are the asymptotical variances of the maximum likelihood
estimators (50).

We now give a procedure for estimation of rav from genome-wide estimates of αl and
αvl. Assuming that αl is known without error, then rav is (approximately) the regression
coefficient of α̂vl on αl across the loci. Assuming that k is small, so terms involving k2

can be ignored,

Covl(α̂vl,αl)

Varl(αl)
≈ rav + k

Varl(dl)

Varl(αl)
+ (1 + krav)rad

√
Varl(dl)

Varl(αl)
, (96)

where the l subscript on Covl(α̂vl,αl) indicates the covariance is across the loci, not the
sampling covariance within a locus, and rad = Corrl(aτ l, dl). For most traits, one would
expect that Varl(dl) << Varl(αl). Therefore,

Covl(α̂vl,αl)

Varl(αl)
≈ rav. (97)

However, we only have noisy estimates of αl, so we regress α̂vl on α̂l. This regression
coefficient is

Covl(α̂vl, α̂l)

Varl(α̂l)
≈ rav

(
1 +

El[Var(α̂l)]

Varl(α̂l)− El[Var(α̂l)]

)−1

. (98)

This regression gives a biased estimate of rav due to noise in the estimation of αl, an
example of regression dilution. The bias decreases with the signal to noise ratio in the

18



distribution of αl over the loci: to what degree variation in αl represents variation in real
additive effects versus sampling error. Therefore,

rav ≈
Covl(α̂vl, α̂l)

Varl(α̂l)

(
1 +

El[Var(α̂l)]

Varl(α̂l)− El[Var(α̂l)]

)
, (99)

which can be estimated from the genome-wide distributions of α̂vl and α̂l.
When very many (not strongly linked) loci with varying additive effects have been

analysed, sampling error in rav will be very small. Ignoring sampling variation in the
estimation of rav, we have

d̂l = α̂vl − ravα̂l; Var(d̂l) = Var(α̂vl) + r2avVar(α̂v). (100)

This gives a test statistic for a non-zero dispersion effect:

d̂2l
Var(α̂vl) + r2avVar(α̂v)

∼ χ2
1. (101)

We note that sample estimates of rav may be sensitive to a few strong effect loci with
both additive effects and dispersion effects. We recommend estimating rav using robust
regression techniques to reduce this effect (Online Methods).
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A Computation of the derivative with respect to the
variance parameters

To compute the derivative with respect to the variance parameters, we use the method of
differentials[7] to compute the infinitesimal change in the log-likelihood, dL, with respect
to infinitesimal changes in λ or β.

We illustrate this with an example. For a scalar function, L, of a column vector, x,
one computes the infinitesimal change in L, dL, with an infinitesimal change in a the
vector, dx:

dL =
∂L

∂xT
dx, (102)

which corresponds to the linear term in the Taylor expansion of L:

L = L(0) +
∂L

∂xT
dx+ . . . (103)

Note that the infinitesimal change, dx, is of the same dimension as x, whereas ∂L
∂xT has

dimension equal to xT .
In deriving the differentials with respect to the variance parameters, we utilise the

differential formulae[7]:

dΛ−1 = −Λ−1dΛΛ−1, d log |Λ| = tr(Λ−1dΛ). (104)

A.1 Derivative with respect to λ

We compute the infinitesimal change in L with respect to an infinitesimal change in λ,
dλ. The differential of the log-likelihood with respect to λ relies upon the differential of
Λ with respect to λ:

dL = −
l∑

j=1

Wjdλ− tr(Λ−1dΛ)− rTΛ−1(dΛ)Λ−1r. (105)

The differential of Λ with respect to λ is

dΛ = dH−1 = −H−1diag(Wdλ) (106)
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Therefore,

−tr(Λ−1dΛ) = tr(Λ−1H−1diag(Wdλ)) (107)

=
l∑

j=1

Λ−1
jj exp(−Wjλ)Wjdλ.

For the other component of the differential, we have

−rTΛ−1(dΛ)Λ−1r = rTΛ−1H−1diag(Wdλ)Λ−1r (108)

= tr(Λ−1rrTΛ−1H−1diag(Wdλ)). (109)

Let Γ = Λ−1rrTΛ−1, then

− rTΛ−1(dΛ)Λ−1r =
l∑

j=1

Γjj exp(−Wjλ)Wjdλ. (110)

Therefore,

dL = −
l∑

j=1

Wjdλ+
l∑

j=1

Λ−1
jj exp(−Wjλ)Wjdλ+

l∑

j=1

Γjj exp(−Wjλ)Wjdλ. (111)

Therefore,

∂L

∂λT
=

l∑

j=1

[(Λ−1
jj + Γjj) exp(−Wjλ)− 1]Wj. (112)

A.2 Derivative with respect to β

To aid differentiation, we rewrite Λ to make its reliance on β explicit:

Λ = H−1 + ZTD−1Z = H−1 +
n∑

i=1

ZT
i Zi exp(−Viβ), (113)

where Zi is the ith [1× l] row vector of Z.
We also rewrite r to make its dependence on β explicit.

r =
n∑

i=1

ZT
i (yi −Xiα) exp(−Viβ). (114)

The differential of the likelihood with respect to a change in β is

dL =−
n∑

i=1

Vidβ +
n∑

i=1

(yi −Xiα)
2 exp(−Viβ)Vidβ− (115)

tr(Λ−1dΛ) + d(rTΛ−1r).
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The differential of Λ with respect to β is

dΛ = −
n∑

i=1

ZT
i Zi exp(−Viβ)Vidβ. (116)

It can therefore be shown that,

−tr(Λ−1dΛ) =
n∑

i=1

ZiΛ
−1ZT

i exp(−Viβ)Vidβ. (117)

We use the fact that

d(rTΛ−1r) = 2rTΛ−1dr − rTΛ−1dΛΛ−1r (118)

to derive the differential of the inner product rTΛ−1r.
The differential of r with respect to β is

dr = −
n∑

i=1

ZT
i (yi −Xiα) exp(−Viβ)Vidβ. (119)

The differential of Λ−1 is

dΛ−1 = −Λ−1dΛΛ−1 (120)

=
n∑

i=1

Λ−1ZT
i ZiΛ

−1 exp(−Viβ)Vidβ.

It can then be shown that

d(rTΛ−1r) =
n∑

i=1

rTΛ−1ZT
i

(
ZiΛ

−1r − 2(yi −Xiα)
)
exp(−Viβ)Vidβ. (121)

This can be calculated efficiently by realising that ZiΛ−1r = rTΛ−1ZT
i , and that this is

the ith element of the vector

a = ZΛ−1[ZTD−1(y −Xα)]. (122)

Therefore, the differential is

d(rTΛ−1r) =
n∑

i=1

ai (ai − 2(yi −Xiα)) exp(−Viβ)Vidβ (123)
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Therefore,

dL =−
n∑

i=1

Vidβ +
n∑

i=1

(yi −Xiα)
2 exp(−Viβ)Vidβ+ (124)

n∑

i=1

ZiΛ
−1ZT

i exp(−Viβ)Vidβ + ai (ai − 2(yi −Xiα)) exp(−Viβ)Vidβ

Therefore,

∂L

∂βT
=

n∑

i=1

{(yi −Xiα)
2 + ZiΛ

−1ZT
i + ai (ai − 2(yi −Xiα))} exp(−Viβ)Vi −

n∑

i=1

Vi.

(125)

Let

ki = (yi −Xiα)
2 + ZiΛ

−1ZT
i + ai (ai − 2(yi −Xiα)) , (126)

then

∂L

∂βT
=

n∑

i=1

(ki exp(−Viβ)− 1)Vi. (127)

B Inverse normal transformation

If a phenotype Y admits a continuous cumulative distribution function, FY , then

τ(Y ) = Φ−1(FY (Y )) ∼ N (0, 1), (128)

where Φ is the cumulative distribution function for the standard normal distribution. If
FY is absolutely continuous, then τ is differentiable, with derivative

τ ′(y) =
fY (y)

φ(τ(y))
, (129)

where fY is the density function of the phenotype, and φ is the standard normal density
function.

Without knowing the true distribution function of Y , one can replace FY with the
empirical cumulative distribution function,

F̂Y (y) =
1

1 + n

n∑

i=1

1yi≤y, (130)
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where 1yi≤y indicates whether observation i of Y is less than or equal to y or not. The
empirical inverse-normal transformation function becomes

τ̂(Y ) = Φ−1(F̂Y (Y )). (131)

By the Glivenko-Cantelli theorem, F̂Y converges uniformly to FY , so, by the Continuous
Mapping Theorem, τ̂(Y ) converges almost surely to τ(Y ). The rate of convergence of
F̂Y to FY is the standard

√
n rate of convergence (Donsker’s Theorem), so for the large

sample sizes seen in contemporary human genetics, τ̂(Y ) should closely approximate τ(Y ).
Therefore results about the moments of τ(Y ) should accurately approximate results about
the moments of τ̂(Y ).

C Population structure control

The mean of a phenotype may differ between populations that are genetically different,
which can generate spurious additive associations. To reduce this effect, genetic principal
components are often included in the model as covariates (affecting the mean).

Analogously, the variance of a phenotype may differ between populations that are
genetically different. For example, in the UK Biobank, the variance of BMI in people
of self-declared British ethnicity is higher than those of self-declared Chinese ethnicity.
This could lead to inflation of log-linear variance test statistics if not properly controlled
for. We argue, by analogy to population structure affecting the mean, that using genetic
principal components as variance covariates in a log-linear variance model can reduce the
inflation of log-linear variance test statistics.

To simulate geographic structure in the mean and variance of a phenotype distribu-
tion, we used variables from the UK Biobank that give the north (Data-Field 129) and
east (Data-Field 130) co-ordinates of the individuals’ place of birth in the UK as mean
and variance covariates. We simulated phenotypes for the British subsample of the UK
Biobank interim data release. We used the following model to simulate phenotypes:

Y ∼ N (north− east, exp(0.2[north− east])). (132)

This created a trait where both the mean and variance of the trait differed greatly
between different regions of the UK, despite there being no genetic component to the
trait. We fitted models with linear mean and log-linear variance effects for each SNP,
with and without the top 20 principal components and the genotyping array as mean and
variance covariates. The mean log-likelihood ratio test statistic under the null should be
1, which is what could be achieved with perfect control of population structure in this
simulation with no real genetic effects.

Without fitting any mean and variance covariates, the mean log-likelihood ratio test
statistics across loci on chromosome 22 were: 5.78 for the additive test, and 4.03 for
the log-linear variance test. This indicates very strong mean and variance population

24



structure. We saw no evidence for a correlation between allele frequency and log-linear
variance test statistic (sample correlation 0.003).

For this analysis, we used the top 20 principal components and the genotyping array
as mean and variance covariates. This reduced the mean test statistics to 1.19 (additive
test), and 1.13 (log-linear variance test). Here, fitting principal components as variance
covariates is clearly effective in reducing the inflation of log-linear variance test statistics.

For computational efficiency in additive genome-wide association studies, the max-
imum likelihood estimates of the mean covariates from the null model can be used to
‘project out’ their effects before fitting models for specific SNPs. This enables the fitting
of SNP-specific models with only a couple of mean parameters. If α̂0 is the maximum like-
lihood estimate of the mean effects in the null model, then one transforms the phenotype,
Y , to

Y −Xα̂0. (133)

In a similar fashion, the phenotype can be rescaled so as to remove the influence of the
variance covariates in the null model, reducing the number of variance parameters to fit
for each SNP. If β̂0 is the maximum likelihood estimate of the variance effects in the null
model, the transform performed is

Y → exp (diag(−0.5V β̂0))(Y −Xα̂0). (134)

In our simulation of a trait with mean and variance structure, we tested if performing
this transform and fitting only SNP specific mean and variance effects was effective at
controlling for population structure. We used the same mean and variance covariates as
above (top 20 principal components and the genotyping array). The mean additive test
statistic was 1.12, and the mean log-linear variance test statistic was 1.24. Performing this
transform is therefore approximately as effective at controlling for the effects of structure
on the test statistics as fitting the full model at each SNP, while being computationally
more efficient. There may be a loss in power, however, for causal SNPs that are correlated
with mean and variance covariates in the null model.
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