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Nearly all genome-wide association study (GWAS) associations 
have been discovered by testing the simplest additive model1. 
A long-standing controversy exists about the importance of 

departures from the additive model in human genetics2. In addition, 
the extent and nature of interactions between genetic variants and 
environmental factors remains poorly characterized. The advent of 
large population-based cohorts, such as the UK Biobank3, provides 
large samples of genotyped individuals along with rich lifestyle and 
environment information. With the right statistical methodology, 
this will accelerate characterization of the interaction between genes 
and environment.

The problem of searching for interaction effects is harder than 
for additive effects, in part because the number of possible inter-
action models grows superlinearly with the number of possibly 
interacting variables4. The variance of a quantitative phenotype dif-
fers with the genotype of loci involved in interactions5,6. Therefore, 
one can reduce the search space of possible interaction models by 
screening genome-wide loci for variance effects.

Interactions involving genetic variants are one cause of a more 
general phenomenon: genetic effects on phenotypic variability7–9. 
Control of phenotypic variability, both within and between indi-
vidual organisms, is a fundamental property of biological systems10. 
It is likely that organisms have evolved to suppress certain kinds 
of variability resulting from developmental processes and environ-
mental stimuli7. The understanding of genetic effects on phenotypic 
variability is poor compared to the understanding of genetic effects 
on mean trait values7, in part because methods for investigating 
effects on variability are not as well developed.

Most published methods for detecting loci affecting phenotypic 
variability concentrate on testing for a variance effect alone11,12, even 
though such loci are also likely to affect the mean of the pheno-
type. Methods that jointly test for mean and variance effects13,14 are 
not as well developed as those for additive association testing, and 
their implementation in a linear mixed-model framework relies on 

algorithms that scale cubically with sample size14,15, making them 
impractical to apply to the large sample sizes needed to detect vari-
ance effects on complex human traits.

Here we introduce a two-degree-of-freedom test for jointly test-
ing mean and variance effects on quantitative traits. If the trait dis-
tribution is non-normal, then additive effects at a locus will induce 
variance effects that are unlikely to be of interest. We show how to 
account for this and thereby detect variance effects not driven by 
mean effects. We implement the test in a mixed-model framework 
and develop an algorithm for fitting this model, whose computations 
scale linearly with sample size. To illustrate application of the method, 
we analyze body mass index (BMI) in the subsample population of 
the UK Biobank with predominantly British ancestry (n ~408,000).

Results
Variance models. We introduce a variance effect that is analo-
gous to the additive effect on the mean. Because the variance is 
always positive, we cannot use a linear model, which is unbounded; 
instead, we use a log-linear model. Let σ = ∣ =Y G gVar( )g

2  be the 
variance conditional on the allele count at a single nucleotide poly-
morphism (SNP), G being ∈g {0, 1, 2}. This model has the form 

σ μ α= + glog( )g v v
2  for some constant μv and a log-linear variance 

effect αv. We note that when variance effects are small, log-linear 
variance effects should be approximately equivalent to the linear 
variance effects modeled in a previous meta-analysis of variance 
effects12. We fit this in a model that also allows for an additive effect 
on the mean:

μ α μ α∣ = ~ + +Y G g N g gM : ( , exp( ))v vAV

which we call the additive variance (AV) model.
To model more complicated relationships between genotype 

and phenotypic variance, we introduce a general variance effect, δv, 
which models nonlinear changes in log-variance with genotype as
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σ μ α δ= + + −g g flog( ) ( 2 )g v v v
2 2

where f is the allele frequency. In the Supplementary Note, we show 
how these variance models fit into a hierarchy of models for the 
effect of genotype on phenotype; we also show the connection 
between these models and the mutual information between geno-
type and phenotype.

Variance tests. There is a natural one-degree-of-freedom test for 
a log-linear variance effect, as well as a general two-degree-of-
freedom test for both a log-linear and general variance effect. Cao  
et al.13 previously suggested using the two-degree-of-freedom vari-
ance test, which is very similar to the Bartlett test.

To assess the power of the two approaches, we simulated traits 
affected by a genetic variant (frequency =  0.5) with both log-linear 
and general variance effects (Methods). For the sample size consid-
ered (n =  100,000), the one-degree-of-freedom test was more pow-
erful unless the variance of the heterozygote deviated by ≥  2% from 
a log-linear variance model (Supplementary Table 1). We also show 
in the Supplementary Note that the functional form of the effect on 
the log-variance for an interacting locus is linear up to a correction 
on the order of O(αv

2).
Therefore, we propose a test to discover loci with mean and vari-

ance effects that compares the likelihood of the AV model, MAV, to 
the likelihood of the null model. We call this the AV test (Fig. 1). 
Because of the reduced degrees of freedom, this test should have 
improved power over the test proposed by Cao et al.13 unless the 
variance of the heterozygote deviates substantially from a log-linear 
model.

We note that dominance (a nonlinear relationship between phe-
notypic means and allele counts) could potentially induce spuri-
ous variance effect estimates from a model that assumes a linear 
relationship between allele counts and phenotypic means. We rec-
ommend checking for this for variants displaying evidence of a vari-
ance effect under the AV model by fitting a model that includes a 
dominance effect (Supplementary Note).

Non-normality and variance effects. So far, models and test sta-
tistics have been derived under an assumption of normality. When 
the phenotypic distribution is non-normal, the null distribution of 
the variance test statistics is improperly calibrated16. Inverse nor-
mal transformation of the phenotype can be used to ensure that the 
null distribution of the variance test statistic is properly calibrated. 
However, there is a relationship between the mean and the variance 
of any non-normal distribution. This implies that, when trait values 
follow a non-normal distribution, any genetic variant that affects 
the mean of the trait will also affect the variance of the trait. This 
phenomenon can be seen in genome-wide estimated mean and 
variance effects on BMI taken from summary statistics provided by 
the GIANT (Genetic Investigation of ANthropometric Traits) con-
sortium12,17 (see URLs; Supplementary Fig. 3). This kind of variance 
effect is unlikely to be of direct interest and is not indicative of an 
interaction effect.

Variance effects driven by a mean–variance relationship can, in 
theory, be removed by a variance-stabilizing transformation if the 
mean–variance relationship is known. However, variance effects 
due to a mean–variance relationship are not, in general, removed by 
inverse normal transformation.

We introduce ‘dispersion effects’, which are effects on phenotypic 
variance independent of the general mean–variance relationship of the 
phenotypic distribution, implying that they are insensitive to pheno-
typic transformation (Methods and Supplementary Note). We show 
that, when additive effects are small, there is an approximately linear 
relationship between additive effect (αl), log-linear variance effect 
(αvl), and dispersion effect (dl) at each locus l (Supplementary Note).  

Thus, α α≈ +r dvl l lav , where rav parameterizes the expected log-lin-
ear variance effect due to the general mean–variance relationship 
and can be estimated from genome-wide regression of log-linear 
variance effect estimates on additive effect estimates (Methods). 
Given rav, the dispersion effects are estimated by α α̂ = ̂ − ̂d rl vl lav .

The heteroskedastic linear mixed model (HLMM). Linear mixed 
models can be used to model the effects of many genome-wide 
SNPs on the mean of a trait18,19. The effects are modeled as random 
effects, typically drawn from a normal distribution. Depending on 
how the SNPs are selected, linear mixed models can increase power 
and/or control for population structure and relatedness in GWAS19. 
The HLMM is a generalization of the standard mixed model that 
also models the effect of a set of variables on the residual variance 
of a trait. While such models have been proposed before15, existing 
algorithms for them scale with the cube of the sample size15, making 
them impractical for large samples. We give an algorithm for fitting 
the model that scales linearly when the number of random effects 
is fixed (Methods).

While the HLMM offers a potential gain in both power and 
robustness, it comes at a computational cost. In some settings, it will 
be appropriate to simply fit the heteroskedastic linear model, which 
is very fast. We provide software for fitting both the mixed and lin-
ear versions of the heteroskedastic model (see Code availability).

Simulation of inference on a non-normal phenotype. To demon-
strate inference on a non-normal phenotype, we simulated 10 non-
normal phenotypes (n =  150,000) using a gamma model (Methods). 
In the gamma model, every SNP with an additive effect on the 
untransformed phenotype also has a linear effect on phenotypic 
variance. For each phenotype, out of 22,000 simulated SNPs with 
varying frequencies, 1,000 were chosen to have additive effects on 
the phenotype, with 10% of the phenotypic variance explained by 
the combined additive effects. One of the 1,000 SNPs with addi-
tive effects was chosen to have a log-linear dispersion effect of 0.05 
as well as an additive effect in the same direction as the dispersion 
effect. An inverse normal transformation was performed on the 
phenotypes before analysis.

Inference of additive and AV models was performed by maxi-
mum likelihood (Supplementary Note); dispersion effects were 
inferred (Methods). The Kolmogorov–Smirnov test was used to 
detect deviations from theoretical null distributions. Test statis-
tics were combined across the ten independent phenotypes for the 
Kolmogorov–Smirnov tests. For the null hypothesis SNPs, we found 
no evidence for deviation from the theoretical null distributions for 
any of the test statistics examined: additive (n =  210,000, D =  0.0015, 
P =  0.23); log-linear variance (n =  210,000, D =  0.0017, P =  0.58); AV 
(n =  210,000, D =  8 ×  10−4, P =  1.00); and dispersion (n =  210,000, 
D =  0.0019, P =  0.60).

For the 999 SNPs with additive effects on the non-normal phe-
notype, but no dispersion effect, the log-linear variance test statis-
tic showed strong evidence for deviation from the null hypothesis 
(n =  9,990, D =  0.11, P <  2.2 ×  10−16), with a mean log-likelihood 
ratio 56% larger than would be expected under the null hypoth-
esis. However, there was no evidence that the dispersion effect test 
statistic deviated from the null hypothesis (n =  9,990, D =  0.0078, 
P =  0.58). In contrast, for the locus with a dispersion effect, the aver-
age P value for a dispersion effect was 6.8 ×  10−11. This demonstrates 
that our method can powerfully distinguish between loci that show 
variance effects because of a general mean–variance relationship 
and loci that have dispersion effects.

To simulate inference with the HLMM, we modeled random 
effects for the top 1,000 SNPs ranked according to the additive 
test statistics for each simulation. For the null hypothesis SNPs, 
we found no evidence for deviation from the theoretical null dis-
tributions for the additive test statistic (n =  210,000, D =  0.0019, 
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P =  0.43). However, we found evidence for slight deflation of the log-
linear variance (mean =  0.984, P =  3.0 ×  10−5 from the Kolmogorov–
Smirnov test) and dispersion test statistic (mean =  0.990, P =  0.008). 
While there may be a very slight deflation of the variance test statis-
tic for the null hypothesis SNPs, this does not imply there is reduced 
power for causal SNPs.

Compared to the non-mixed model, the additive chi-squared 
statistics were 9.5% higher on average for causal SNPs without dis-
persion effects; the log-linear variance statistics were 20.3% lower. 
For SNPs with a true dispersion effect, the dispersion chi-squared 
test statistics were 14.6% higher on average compared to the non-
mixed-model analysis. This shows that modeling the random 
effects of SNPs can increase the power to detect loci with additive 
and dispersion effects.

Application to BMI in the UK Biobank. We analyzed the subsam-
ple of the UK Biobank population with predominantly white British 
ancestry as defined by the UK Biobank quality control process20. 
We applied an inverse normal transformation to BMI and adjusted 
for age, sex, and 40 principal components (Methods). After sample 
quality control (Methods), there were 408,250 individuals with both 
genotype and BMI data. We split the sample into two: an ‘unre-
lated’ subsample (n =  276,415), with no pairs related at the third-
degree level or higher; and the complementary ‘related’ subsample 
(n =  131,835), which contains all third-degree or closer relative 
pairs. We did this to demonstrate two different uses of the mixed 
model: (1) to increase power in a homogeneous, unrelated sample; 
and (2) to control for relatedness. We selected 500 SNPs to model 
the random effects for the unrelated sample and 1,000 SNPs for 
the related sample (Methods). We then combined the additive and 
log-linear variance effects from the two subsamples to give single 
estimates of additive and log-linear variance effects for each SNP 
(Supplementary Table 2).

To visualize the genome-wide results of fitting the AV model, 
we introduce the ‘Manhattan Sunset’ plot (Fig. 2), which displays 
the additive and log-linear variance test statistics stacked on top of 
each other, highlighting any loci with evidence of variance effects. 
We note that many SNPs in the major histocompatibility complex 
(MHC) region on chromosome 6 appear to have both additive and 
variance effects on BMI (Fig. 2). Because of its complexity, we did 
not pursue further analysis of this region here.

We determined that a locus was significant if its P value for the 
AV test was below the accepted conventional level for genome-
wide significance, namely 5 ×  10−8 (Methods). Out of 328 loci that 
are genome-wide significant under either the additive or AV test 
(Supplementary Table 3), 48 loci have a smaller P value from the AV 
test than from the additive test, including the FTO locus. However, 
most loci have a smaller P value for the additive test; 56 loci that are 
genome-wide significant under the additive test are not genome-
wide significant under the AV test.

While there may be a slight loss of power for most associated 
loci, for loci with substantial dispersion effects, a gain in power is 
likely. Fifteen loci were genome-wide significant under the AV test, 
although not under the additive test; some of these showed evidence 
for dispersion effects, as we outline next.

Evidence for dispersion effects. Untransformed BMI is non-nor-
mal, so variance effects may be due to a general mean–variance 
relationship that has not been removed by inverse normal transfor-
mation. To move beyond this, we estimated the dispersion effects 
for all test SNPs genome-wide (Methods). We inferred that, for 
inverse normally transformed BMI, ≈ .r 0 135av  (Fig. 3) (Methods). 
While the genome-wide additive and log-linear variance test sta-
tistics show similar patterns of deviation from the null hypoth-
esis, the dispersion test statistics follow a different pattern (Fig. 4).  
This is further evidence that the component of the variance test  

statistics driven by the mean effects has been largely removed from 
the dispersion test statistics. The systematic excess, relative to the 
null hypothesis, of the large test statistics in the right-hand half of 
the dispersion quantile-quantile plot (Fig. 4c) shows that there are 
likely to be many SNPs with real dispersion effects.

One locus reached genome-wide significance for a dispersion 
effect, around SNP rs900400 (P =  1.2 ×  10−8, Fig. 5). Furthermore, 
some other loci with strong evidence under the AV model display 
evidence of dispersion effects: we list those loci with P <  10−3 for a 
dispersion effect and P <  5 ×  10−8 under the AV test in Table 1.

There are three loci in this list (around rs1538749, rs1801282, 
and rs900400) not previously associated with BMI at genome-wide 
significance levels, although rs1538749 and rs900400 have been 
associated with other obesity-related phenotypes at genome-wide 
significance levels (including hip circumference and waist-to-
hip ratio for rs1538749 and waist circumference and waist-to-hip 
ratio for rs900400)21. Of the other loci in the table, there are two 
known loci with strong effects on BMI (GIPR and FTO), a synony-
mous codon variant (rs2303223) in ZNF668 in strong linkage dis-
equilibrium (LD; r2 =  0.993) with a previously identified missense 
variant (rs749670) in ZNF64621, and a variant at the TCF7L2 locus 
(rs10787472), which contains variants with known strong effects on 
type 2 diabetes risk.

Using results from GIANT meta-analyses12,17, we examined 
whether additive and variance effects could be replicated. We repli-
cated the variance effect for rs900400 (P =  1.1 ×  10−3) (Table 1). The 
estimated additive effect for rs900400 is so weak that it is consistent 
with zero in both our data (P =  0.12) and the GIANT meta-anal-
ysis (P =  0.18). The C allele of SNP rs900400 has been associated 
with lower birth weight22,23, and the locus provides the strongest 
genome-wide association for this phenotype. By using self-reported 
birth weight data from the UK Biobank, we showed that the vari-
ance effect of rs900400 was not mediated through its effect on 
birth weight (Methods). The rs900400 SNP also shows significant 
genome-wide association with expression of TIPARP in adipo-
cytes24 and with age at menarche25.
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Fig. 1 | Association signal of AV test for simulated phenotypes with 
different parameters. The expected − log10(P) of the AV test for different 
additive and log-linear variance effects of the test locus is indicated by the 
shading. Phenotypes were simulated for 100,000 unrelated individuals 
(Methods). The test locus had a frequency of 0.5; the strength of the 
additive effect is parameterized by the amount of variance explained, h2. 
The log-linear variance effect is indicated on the y axis and corresponds 
approximately to the proportional change in phenotypic variance per allele. 
We have highlighted two regions of parameter space: the area inside the 
green lines is where the association signal is stronger under the additive 
test than under the AV test; the area inside the yellow lines is where the AV 
test is genome-wide significant (P <  5 ×  10−8) but the additive test is not.
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For rs1801282, the additive effect we observed was replicated in 
the GIANT meta-analysis (P =  4.2 ×  10−7). The estimated variance 
effect is consistent between our analysis (0.022) and the GIANT 
meta-analysis (0.015), but it does not quite reach statistical signifi-
cance in the GIANT meta-analysis (P =  0.084). The SNP rs1801282 
is a missense variant in the gene PPARG. PPARG is involved in 
fatty acid storage and glucose metabolism, and is a target for a class 
of type 2 diabetes drugs (thiazolidinediones). The minor G allele 
has been repeatedly associated with reduced type 2 diabetes risk26. 
We found that the minor G allele is also associated with increased 
BMI and increased variability in BMI. The additive effects on type 
2 diabetes and BMI are similar to the action of thiazolidinedio-
nes, which treat type 2 diabetes but have been found to cause fat 
gain27. We did not find evidence that the variance effect is medi-
ated through an interaction with type 2 diabetes status (P =  0.58) 
(Methods).

For rs1538749, the additive effect was consistent but not statisti-
cally significant (P =  0.097) in the GIANT meta-analysis. The vari-
ance effect could not be replicated, with an effect estimate close to 
zero (P =  0.84).

We found that nearly half of the previously identified variance 
effect of the FTO risk allele12 (rs1421085; 0.027 per risk allele) can 
be explained by its additive effect, with a much smaller estimated 
dispersion effect (0.017 per risk allele).

Putative gene–environment interactions. By using a previously 
published approach to test jointly for interactions between lifestyle 
and/or environmental variables and variation at the FTO locus28, 
we tested for interactions between the SNPs in Table 1 and diet, 
physical activity, sleep duration, TV watching, frequency of alco-
hol consumption, and socioeconomic status (Townsend deprivation 
index) (Methods). The results of fitting these interaction models are 
shown in Supplementary Table 4. Here, we report the interactions 
with P <  0.005, except for SNP rs1421085 (FTO), on which we have 
previously reported28.

The only SNP other than rs1421085 (FTO) with strong evidence 
for a specific gene–environment interaction was rs900400. We found 

evidence for an interaction with physical activity (P =  5.0 ×  10−5). 
There was also suggestive evidence for an interaction with diet 
(P =  6.2 ×  10−3). The results suggest that the variability-increasing 
allele may enhance the effect of physical activity and diet variation 
on BMI. Modeling the interactions reduced the estimated vari-
ance effect of rs900400 from 0.0200 to 0.0185, indicating that the 
modeled interactions do not explain all of the variance effect of 
rs900400. In contrast, the modeled interactions reduced the vari-
ance effect of rs1421085 (FTO) from 0.027 to 0.018, indicating that 
the interactions explain a substantial fraction of the variance effect 
of the FTO locus.

Leptin and BMI dispersion effects. The T allele of SNP rs900400 
has also been associated with higher levels of circulating leptin 
after adjusting for BMI29. To investigate whether there might be a 
more general connection between leptin levels and BMI variabil-
ity, we next asked whether SNPs associated with changes in leptin 
levels tended to be associated with BMI variability. Specifically, we 
took the top 100 lead SNPs from independent loci with evidence 
for effects on leptin levels adjusted for BMI29 and compared their 
estimated effects on leptin adjusted for BMI with their estimated 
BMI dispersion effects. We observed a small but significant linear 
relationship between the effect of the SNP on leptin adjusted for 
BMI and on BMI dispersion. We estimate that a SNP that increases 
leptin levels by 1 s.d. per allele would have an expected dispersion 
effect on BMI of 0.032 (P =  0.026, Methods and Supplementary  
Fig. 4). Following a Mendelian randomization argument, these 
results suggest that there may be a connection between leptin and 
BMI variability.

Discussion
We have introduced a new framework for association testing that 
extends widely used additive tests by testing for a linear change 
in phenotypic mean (exactly as in additive tests) and a log-lin-
ear change in phenotypic variance. A new visualization tool, the 
Manhattan Sunset plot, provides a genome-wide picture of evidence 
for both additive and log-linear variance effects.
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When applied to GWAS and related studies, this approach  
(1) can be more powerful for discovery of associated loci, and (2) 
can specifically identify loci with effects on phenotypic variability. 
We have demonstrated both of these potential advantages through 
simulations and application to BMI in the UK Biobank.

Mixed-model approaches have several advantages19. The test we 
propose can be performed in the HLMM; we provide an algorithm 
that scales linearly with sample size for a fixed number of random 
effects. We have demonstrated in simulations that our method has 
increased power over other tests that jointly test for mean and vari-
ance effects because of (1) a reduction in the degrees of freedom of 
the variance test statistics and (2) a reduction in the signal-to-noise 
ratio from modeling the random effects of SNPs with evidence for 
association.

When multiple haplotypes with different phenotypic effects 
are present in the region of a SNP, this can generate association 
between genotype and phenotypic variance at the SNP8. While 
detailed investigation of this phenomenon is beyond the scope 
of this article, it might explain some of the additive and variance 
effects of SNPs in the MHC region. However, this phenomenon 
is unlikely to explain the variance effect of rs900400, since it 
occurs between two close recombination hotspots, or the variance 
effects of the other SNPs in Table 1, since the SNPs are not in LD 
(r2 <  0.01) with other SNPs with strong evidence for additive effects 
(Methods).

Variance effects that are explained by a general mean–variance 
relationship are unlikely to reflect interactions or other biologically 
meaningful phenomena. We developed a method that can iden-
tify when a SNP has a variance effect beyond that which can be 
explained by a general mean–variance relationship, which we term 
a ‘dispersion effect’. As one application, we showed that around 
half of the reported effect of the FTO locus on BMI variability12 is 
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explained by a general mean–variance relationship; thus, it may not 
be biologically interesting.

While only rs900400 showed genome-wide significant evidence 
for a dispersion effect, six other SNPs that were genome-wide sig-
nificant under the AV test showed some evidence for a dispersion 
effect (Table 1). More generally, genome-wide test statistics showed 
an excess of large dispersion effect estimates (Fig. 4c), implying that 
these effects are prevalent and may be worthy of further investiga-
tion. It has been previously observed that rs900400 affects leptin 
levels29; we found suggestive evidence for a more general connection 
between leptin and BMI variability.

The statistical testing framework we have developed can be 
applied to many other traits, enabling the discovery of genetic  
factors that affect trait variability. Beyond an intrinsic biologi-
cal interest in factors determining trait variability, this approach  
can guide the search for gene–gene and gene–environment  
interactions. Its application in large population biobanks  
will enable well-powered studies that increase our understand-
ing of the interactions influencing phenotypic variation in  
human populations.

URLs. GIANT consortium, https://portals.broadinstitute.org/col-
laboration/giant/index.php?title= GIANT_consortium&oldid= 
251; UK Biobank Project, http://www.ukbiobank.ac.uk/; LD scores: 
https://data.broadinstitute.org/alkesgroup/LDSCORE/.
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s41588-018-0225-6.

Received: 15 April 2017; Accepted: 3 August 2018;  
Published online: 15 October 2018

References
 1. Price, A. L., Spencer, C. C. A. & Donnelly, P. Progress and promise in 

understanding the genetic basis of common diseases. Proc. Biol. Sci. 282, 
20151684 (2015).

 2. Hill, W. G., Goddard, M. E. & Visscher, P. M. Data and theory point to 
mainly additive genetic variance for complex traits. PLoS Genet. 4,  
e1000008 (2008).

 3. Sudlow, C. et al. UK biobank: an open access resource for identifying the 
causes of a wide range of complex diseases of middle and old age. PLoS. Med. 
12, e1001779 (2015).

 4. Marchini, J., Donnelly, P. & Cardon, L. R. Genome-wide strategies for 
detecting multiple loci that influence complex diseases. Nat. Genet. 37, 
413–417 (2005).

 5. Paré, G., Cook, N. R., Ridker, P. M. & Chasman, D. I. On the use of variance 
per genotype as a tool to identify quantitative trait interaction effects: a report 
from the Women’s Genome Health Study. PLoS Genet. 6, e1000981 (2010).

 6. Struchalin, M. V., Dehghan, A., Witteman, J. C., van Duijn, C. & Aulchenko, 
Y. S. Variance heterogeneity analysis for detection of potentially interacting 
genetic loci: method and its limitations. BMC Genet. 11, 92 (2010).

1,000

750

500

250

0

60

40

20

0

30

20

10

0

0 5 10
Theoretical Theoretical Theoretical

15 20 0 5 10 15 20 0 5 10 15 20

Additive

S
am

pl
e

S
am

pl
e

S
am

pl
e

a b c
Log-linear
variance

Dispersion

Fig. 4 | Quantile-quantile plots for test statistics. a–c, We compared the sample quantiles of the additive (a), log-linear variance (b), and dispersion 
test statistics (c) to the theoretical quantiles of the null distribution. Under the null distribution, the test statistics asymptotically follow a chi-squared 
distribution on 1 d.f. The red diagonal line indicates the expected sample quantiles under the null distribution. Additive test statistics were adjusted for 
inflation using LD score regression30; log-linear variance and dispersion test statistics were adjusted for inflation using genomic control (Methods). Note 
that, because of widespread association in the MHC region (Fig. 2), we removed SNPs from chromosome 6 from these plots.

LYPLAL1

CCNL1

PPARG
TCF7L2

ZNF668

FTO

GIPR

MHC

–l
og

10
(P

)

8

6

4

2

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22

Chromosome

Fig. 5 | Manhattan sunset plot for dispersion effects. The P value for a dispersion effect is plotted for each tested SNP, with the chromosome indicated on 
the x axis. The names of the nearest protein-coding genes are indicated for loci that are genome-wide significant (P <  5 ×  10−8) under the AV test and have 
P <  10−3 for a dispersion effect (Table 1). Note that SNP rs900400 (CCNL1) occurs between two close recombination hotspots, with no other genotyped 
SNPs in strong LD with rs900400. In addition, the MHC is highlighted.

NAtuRe GeNetIcs | VOL 50 | NOVEMBER 2018 | 1608–1614 | www.nature.com/naturegenetics 1613

https://portals.broadinstitute.org/collaboration/giant/index.php?title=GIANT_consortium&oldid=251
https://portals.broadinstitute.org/collaboration/giant/index.php?title=GIANT_consortium&oldid=251
https://portals.broadinstitute.org/collaboration/giant/index.php?title=GIANT_consortium&oldid=251
http://www.ukbiobank.ac.uk/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://doi.org/10.1038/s41588-018-0225-6
https://doi.org/10.1038/s41588-018-0225-6
http://www.nature.com/naturegenetics


Technical RepoRT Nature GeNetics

 7. Hill, W. G. & Mulder, H. A. Genetic analysis of environmental variation. 
Genet. Res. (Camb). 92, 381–395 (2010).

 8. Forsberg, S. K. G. et al. The multi-allelic genetic architecture of a variance-
heterogeneity locus for molybdenum concentration in leaves acts as a source 
of unexplained additive genetic variance. PLoS Genet. 11, e1005648 (2015).

 9. Ivarsdottir, E. V et al. Effect of sequence variants on variance in glucose levels 
predicts type 2 diabetes risk and accounts for heritability. Nat. Genet. 
1398–1402 (2017).

 10. Kitano, H. Biological robustness. Nat. Rev. Genet. 5, 826–837 (2004).
 11. Rönnegård, L. & Valdar, W. Recent developments in statistical methods for 

detecting genetic loci affecting phenotypic variability. BMC Genet. 13, 63 (2012).
 12. Yang, J. et al. FTO genotype is associated with phenotypic variability of body 

mass index. Nature 490, 267–272 (2012).
 13. Cao, Y., Wei, P., Bailey, M., Kauwe, J. S. K. & Maxwell, T. J. A versatile 

omnibus test for detecting mean and variance heterogeneity. Genet. 
Epidemiol. 38, 51–59 (2014).

 14. Cao, Y., Maxwell, T. J. & Wei, P. A family-based joint test for mean and 
variance heterogeneity for quantitative traits. Ann. Hum. Genet. 79,  
46–56 (2015).

 15. Rönnegård, L., Felleki, M., Fikse, F., Mulder, H. A. & Strandberg, E. Genetic 
heterogeneity of residual variance: estimation of variance components using 
double hierarchical generalized linear models. Genet. Sel. Evol. 42, 8 (2010).

 16. Box, G. E. P. Non-normality and tests on variances. Biometrika 40,  
318–335 (1953).

 17. Locke, A. E. et al. Genetic studies of body mass index yield new insights for 
obesity biology. Nature 518, 197–206 (2015).

 18. Zhang, Z. et al. Mixed linear model approach adapted for genome-wide 
association studies. Nat. Genet. 42, 355–360 (2010).

 19. Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M. & Price, A. L. 
Advantages and pitfalls in the application of mixed-model association 
methods. Nat. Genet. 46, 100–106 (2014).

 20. Bycroft, C. et al. Genome-wide genetic data on ~500,000 UK Biobank 
participants. Preprint at https://www.biorxiv.org/content/
early/2017/07/20/166298 (2017).

 21. Turcot, V. et al. Protein-altering variants associated with body mass index 
implicate pathways that control energy intake and expenditure in obesity.  
Nat. Genet. 50, 26–41 (2018).

 22. Horikoshi, M. et al. New loci associated with birth weight identify genetic 
links between intrauterine growth and adult height and metabolism.  
Nat. Genet. 45, 76–82 (2013).

 23. Freathy, R. M. et al. Variants in ADCY5 and near CCNL1 are associated with 
fetal growth and birth weight. Nat. Genet. 42, 430–435 (2010).

 24. Hivert, M. F. et al. Genetic determinants of adiponectin regulation revealed 
by pregnancy. Obesity (Silver Spring) 25, 935–944 (2017).

 25. Perry, J. R. B. et al. Parent-of-origin-specific allelic associations among 106 
genomic loci for age at menarche. Nature 514, 92–97 (2014).

 26. Zeggini, E. et al. Replication of genome-wide association signals in UK 
samples reveals risk loci for type 2 diabetes. Science 316, 1336–1341 (2007).

 27. Larsen, T. M., Toubro, S. & Astrup, A. PPARgamma agonists in the treatment 
of type II diabetes: is increased fatness commensurate with long-term 
efficacy? Int. J. Obes. Relat. Metab. Disord. 27, 147–161 (2003).

 28. Young, A. I., Wauthier, F. & Donnelly, P. Multiple novel gene-by-environment 
interactions modify the effect of FTO variants on body mass index. Nat. 
Commun. 7, 12724 (2016).

 29. Kilpeläinen, T. O. et al. Genome-wide meta-analysis uncovers novel loci 
influencing circulating leptin levels. Nat. Commun. 7, 10494 (2016).

 30. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding 
from polygenicity in genome-wide association studies. Nat. Genet. 47, 
291–295 (2015).

Acknowledgements
This work was supported by Wellcome Trust grant 095552/Z/11/Z to P.D. and grants 
090532/Z/09/Z and 20314/Z/16/Z as core support for the Wellcome Trust Centre 
for Human Genetics. A.Y. was supported by a Wellcome Trust Doctoral Studentship 
(099670/Z/12/Z) and by the Li Ka Shing Foundation. 

Author contributions
A.Y. developed the method, led its application to the UK Biobank data, and wrote the 
paper. F.L.W. was involved in the development and application of the method. P.D. 
supervised the research and wrote the paper. All work undertaken by F.L.W. was done 
while F.L.W. was at University of Oxford.

competing interests
P.D. is a founder and director of Genomics plc, and a partner of Peptide Groove LLP. The 
remaining authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41588-018-0225-6.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to A.I.Y. or P.D.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2018

NAtuRe GeNetIcs | VOL 50 | NOVEMBER 2018 | 1608–1614 | www.nature.com/naturegenetics1614

https://www.biorxiv.org/content/early/2017/07/20/166298
https://www.biorxiv.org/content/early/2017/07/20/166298
https://doi.org/10.1038/s41588-018-0225-6
https://doi.org/10.1038/s41588-018-0225-6
http://www.nature.com/reprints
http://www.nature.com/naturegenetics


Technical RepoRTNature GeNetics

Methods
Estimation of dispersion effects. Variation at a locus l has a log-linear dispersion 
effect dl on a (not necessarily normal) phenotype Y if μ∣ = =Y G gE[ ]l lg  and

μ∣ = = −Y G g h d g fVar( ) ( )exp( ( 2 ))l lg l l

where fl is the allele frequency, 2fl is the mean genotype value, and h is the function 
that gives the mean–variance relationship for the untransformed phenotype 
distribution. We parameterize the model in terms of mean normalized genotypes, 
(g −  2fl), so that the h function is the same for all loci. When the effects on 
the phenotypic mean are small and additive, there is an approximately linear 
relationship between the additive effect (αl), the log-linear variance effect (αvl), and 
the dispersion effect (dl) at each locus l (Supplementary Note); that is, α α≈ +r dvl l lav . 
It is possible to estimate rav by regression of the estimates of αv,l, αv̂l, on the estimates 
of αl, αl̂, across genome-wide loci (for all l). Standard regression estimates are 
downwardly biased because of noise in the estimation of αl, but this bias can be 
corrected (Methods). Thus, we show (Supplementary Note):











α α
α

α
α α

≈
̂ ̂

̂
+

̂
̂ − ̂

r
Cov ( , )

Var ( )
1

E [Var( )]
Var ( ) E [Var( )]

l vl l

l l

l l

l l l l
av

where the subscripts on Covl and Varl indicate that expectations are to be taken 
over the loci, whereas α ̂Var( )l  represents the within-locus sampling variance, which 
is known from the asymptotic distribution of the maximum likelihood estimator. 
The first factor, α α α̂ ̂ ∕ ̂Cov ( , ) Var ( )l vl l l l , is the standard regression coefficient of αv̂l 
on αl̂ across the loci, while the second term is an adjustment factor for the bias in 
the standard regression coefficient due to noise in the estimation of αl.

We use robust regression to estimate α α α̂ ̂ ∕ ̂Cov ( , ) Var ( )l vl l l l  to prevent being 
overly influenced by outliers. Specifically, we use M-estimation31 with prior 
weights determined by �α∕1 Var( )l . To estimate the adjustment factor, we use the 
sample estimates of α ̂Var ( )l l  and α ̂E [Var( )]l l . We do not claim that this method is 
statistically optimal to estimate rav; however, it worked well in simulations, suggesting 
the method is sufficient for large samples from a polygenic and heritable trait.

When many loci genome-wide are examined for a heritable and polygenic trait, 
error in estimating rav will be negligible and can be ignored. Thereby, we estimate 
dispersion effects by α α̂ = ̂ − ̂d rl vl lav , which has a normal asymptotic sampling 
distribution (Supplementary Note):

� � �α α~ + .υd N d r( , Var( ) Var( ))l l l lav
2

The HLMM. The HLMM is specified as

α β~ +Y N X h GG V( , exp(diag( ))) ,T2

where G is a normalized N × L matrix of genotypes, and h2 corresponds to the 
variance explained by the additive associations of the l genotypes in G. This 
differs from the standard linear mixed model because of the parameterized 
heteroskedasticity of the residual error term, βVexp(diag( )) . By modeling the 
effect of a test SNP on both the mean of the trait (putting it in X) and the residual 
variance of the trait (putting it in V), the additive and log-linear variance effects 
of the SNP can be estimated, enabling the two-degree-of-freedom AV test to be 
performed. Principal components and other covariates can also be included as 
mean covariates (in X) and variance covariates (in V) (Supplementary Note).

Existing computational methods for fitting linear mixed models based on 
spectral decomposition32, which are appropriate when ≫N L, do not work when 
the residual variance is genotype-dependent. We have developed an algorithm for 
efficient inference of the parameters of the HLMM when the number of SNPs in 
the random effect is small compared to the sample size. The covariance matrix for 
the HLMM is

Σ = + = βh GG D D V, exp(diag( ))T2

To compute the likelihood and gradient efficiently, we use low-rank update 
formulae for the inverse and determinant of the covariance matrix, expressed as

Σ = − Λ Λ = + .− − − − − −D h D G G D I h G D G;T T1 1 2 1 1 1 2 1

Similarly, the log-determinant of ∑  can be expressed as 
∣Σ∣ = ∣Λ∣ + ∣ ∣.Dlog log log  This allows us to rewrite the log-likelihood of the model as 

the log-likelihood of a diagonal system plus a low-rank correction. Let l be the log-
likelihood of the model. Then

Λ= − π − ∣ ∣− − α − α − ∣ ∣

+ − α Λ − α

−

− − −

l n D y X D y X

h G D y X G D y X

2 log (2 ) log ( ) ( ) log

[ ( )] [ ( )]

T

T T T

1

2 1 1 1

which can be computed in O(NL2 +  L3) operations. The derivatives of the likelihood 
can be computed in the same complexity class; we give expressions for these and 
further details of the algorithm implementation in the Supplementary Note. 
We note the similarity to computational approaches previously used in general 
linear mixed models33. The NL2 term dominates when ≫N L, and this method 
has effectively the same scaling with sample size as methods based on spectral 
decomposition for additive association testing in a mixed model31. However, 
our method requires an O(NL2) operation at every iteration, making it more 
computationally demanding than spectral decomposition, which requires only one 
O(NL2) operation. We benchmarked our algorithm for N =  100,000 and L =  500 on 
a 4.2 GHz Intel Core i7 processor. Fitting one model took around 1.3 CPU minutes, 
implying that an analysis of 400,000–800,000 SNPs would take between 9 and 
17 hours on a server with 1,000 cores.

Power simulations. To test the power of the AV test relative to the additive test 
when detecting a test locus G, we simulated the phenotypes for 100,000 individuals 
according to the model α∣ = ~ αY G g N g e( , )gv , where the genotype was simulated 
from a binomial(2,0.5) distribution independently for each individual. The additive 
effect, α, varied such that the variance explained by the additive effect varied from 
0 to 0.3%, and αv varied from 0 to 0.05. For each pair (α, αv), 1,000 independent 
phenotypes were simulated. We fitted models by maximum likelihood.

We also investigated how the association signals changed with sample 
sizes ranging from 10,000 to 100,000 for a fixed additive effect of α =  0.02 
(corresponding to an explained variance of 0.02%), with αv varying from 0 to 0.05 
in increments of 0.005.

To compare the power of different variance effect tests, we 
simulated phenotypes for 100,000 individuals according to the model 

α∣ = ~ α δ+ −Y G g N g e( , )g g( 1)v v
2

, where δv represents the general variance effect and 
sets the deviation in log-variance of the heterozygote from a log-linear model. The 
genotype was simulated from a Binomial(2,0.5) distribution independently for 
100,000 individuals. The additive effect, α, was set so that the variance explained 
was 0.02%, δv varied from 0 to 0.05, and αv varied from 0 to 0.05. For each pair (δv, 
αv), 1,000 independent phenotypes were simulated.

Simulation of non-normal phenotypes. We simulated phenotypes for 150,000 
individuals from simulated ‘genomes’ of 22,000 independent SNPs. The frequency 
of each SNP was randomly sampled from a uniform distribution on [0.05,0.5], and 
each individual’s genotype was drawn independently from a binomial distribution 
with the probability parameter equal to the frequency. We randomly selected 1,000 
of 22,000 SNPs to have a causal effect on the phenotype. One of the 1,000 SNPs was 
selected to have a dispersion effect, which we called G1. We generated an additive 
genetic component by sampling normally distributed effect sizes for the 999 causal 
SNPs other than G1. The SNP with the dispersion effect, G1, was given a positive 
additive effect scaled to explain 0.1% of the variance of the overall additive genetic 
component, which explained 10% of the phenotypic variance and includes the 
additive effects of all 1,000 causal SNPs including G1. The overall additive genetic 
component was scaled to have a mean of 0 and a variance of 1.

To simulate the non-normal phenotypes, we used a gamma model. If Y has 
a gamma distribution with a shape parameter (k) and scale parameter (θ), then 

θ~Y kGamma( , ). We parameterized each individual’s distribution to give a 
certain heritability for the trait and a dispersion effect of d1 to the SNP G1. Each 
individual’s phenotype, Yi, was drawn from a gamma distribution with parameters 
chosen so that μ= +Y AE[ ]i i, where Ai is the value of the additive genetic 
component of individual i. Thus, for some s >  0,

μ= + − = −Y s A d g f s Y d g fVar[ ] ( )exp( ( )) E[ ]exp( ( ))i i i i i1 1 1 1 1 1

where gil is the genotype of individual i for G1. This shows the linear relationship 
between the conditional means and variances of a gamma-distributed phenotype. 
This implies that, according to the Law of Total Variance, μ≈ +Y sVar( ) 1. This 
implies that the heritability is μ≈ + −h s( 1)2 1. For a given μ and h2, one can solve 
for s. We chose h2 =  0.1 and μ =  5 for our simulations, implying that s =  1.8. To 
achieve this, each individual’s phenotype is drawn from a gamma distribution, 

θ~Y kGamma( , )i i i , with

μ= − − + ∕k d g f A sexp( ( ))( )i i i1 1 1

θ = −s d g fexp( ( ))i i1 1 1

The phenotypes simulated in this way were inverse normally transformed before 
fitting the models.

UK Biobank data. We used genotype data from the UK Biobank Project (see 
URLs). Quality control is described in the UK Biobank genotyping quality 
control document20. We used the sample of 409,703 individuals identified by the 
UK Biobank as having predominantly white British ancestry. We then excluded 
individuals from the analysis that had been flagged by the UK Biobank as having a 
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putative sex chromosome aneuploidy, excess relatives, or excess heterozygosity. See 
also the Life Sciences Reporting Summary.

Relatedness was determined by the UK Biobank20. We split the sample into 
two groups: one without any pair related at the third-degree level or higher; and 
its complement. The final ‘related’ sample had 131,835 individuals and the final 
‘unrelated’ sample had 276,415 individuals.

Analysis of BMI. An inverse normal transformation was applied to BMI. For 
mean and variance covariates, we used age (Data-Field 21022), sex (Data-Field 31), 
age2, age3, age ×  sex, age2 ×  sex, age3 ×  sex, genotyping array, and the 40 principal 
components provided by the UK Biobank20. Throughout our analysis of BMI, we 
only considered SNPs with a minor allele frequency >  5% and missingness <  5%.

To choose the SNPs for the random effects in each sample, we ranked the SNPs 
by their negative log P values for additive effects from fitting the model without 
the random effects. The advantages of selecting SNPs in this way have been 
elucidated34, although there may be disadvantages compared to using a full-rank 
random effect when there is family relatedness19.

For the unrelated subsample, we selected 500 SNPs from the ranked list in 
descending order, only adding a SNP if it had an r2 <  0.1 with all previously added 
loci. For the related sample, we first fitted the model without random effects and 
ranked SNPs by the strength of the evidence for an additive effect on BMI. We 
selected 1,000 SNPs from this list in descending order, only adding a SNP if it had 
a minor allele frequency >  0.4 and had an r2 <  0.01 with all previously added loci 
(Methods). We used a more stringent r2 threshold for the related sample to ensure 
SNPs were independent; thus, together they gave a better estimate of relatedness 
than if we had included loci in LD. We selected a greater number of common, 
independent loci for the related sample to better control for the relatedness 
present in the sample. To fit the mixed model, we fitted the model including the 
random effects for the selected loci other than the loci on the same chromosome 
as the test SNP.

For computational efficiency, we first fitted a null model for each chromosome 
with all of the mean and variance covariates, obtaining �α0 and �β0 as the maximum 
likelihood estimates of α and β. We then performed the transformation  

� �β α→ − . −Y V Y Xdiag(exp( 0 5 ))( )0 0  to remove the influence of known covariates on 
the mean and the residual variance.

We combined additive effects across the two subsamples in a fixed-effects 
meta-analysis. We did the same for the log-linear variance effects. We calculated 
the Wald statistic for additive and log-linear variance effects by taking the square 
of the ratio of the estimated effects and their standard errors. The Wald statistics is 
asymptotically equivalent to a log-likelihood ratio. For the additive test statistics, 
we used LD score regression30 to infer an inflation factor (see URLs for the source 
of the LD scores). For the log-linear variance test statistics, we calculated the 
sample median across all test SNPs and took the ratio of the sample median to 
0.456 as an inflation factor35. We performed two-degree-of-freedom tests for each 
SNP as the sum of the inflation-adjusted chi-squared test statistics for additive and 
log-linear variance effects.

To estimate rav, we used the procedure outlined earlier for all SNPs excluding 
those on chromosome 6. We excluded SNPs on chromosome 6 to exclude SNPs 
in the MHC region, many of which show evidence for additive and log-linear 
variance effects. We then calculated the Wald statistics for dispersion effects and 
took the ratio of the sample median to 0.456 as an inflation factor35.

We pruned the list of SNPs that were genome-wide significant under either the 
additive or AV test to ensure that our results did not include SNPs in LD with SNPs 
with stronger additive associations. For each chromosome, we took the SNP with 
the strongest additive association first; we then added SNPs in order of additive 
association strength, excluding those with r2 >  0.01 with a SNP already chosen. 
We did this to ensure that any locus we identified as having a dispersion effect was 
independent from other loci with strong additive effects.

If a SNP exhibits a dominance effect, it can lead to spurious inference of a log-
linear variance and/or dispersion effect under the AV model. By fitting a model 
that also included dominance effects, we found no evidence that the estimated 
log-linear variance effects of the SNPs in Table 1 were driven by dominance effects 
(Supplementary Table 5).

Gene–environment interaction analysis. We used a previously published model 
for testing for interactions between rs1421085 (FTO) and various lifestyle and 
environmental factors28. In this model, the SNP and its interactions with multiple 
lifestyle and environmental factors are fitted jointly. Furthermore, because the UK 
Biobank contains many correlated measures of diet and physical activity, these 
variables were collapsed into diet and activity scores. In brief, each activity and 
diet variable was weighted by its strength and direction of association with BMI to 
create a score that well predicted BMI from measures in a particular category (diet 
or physical activity). We used the same weights for construction of these scores as 
in a previous analysis of rs142108528.

The lifestyle and environmental variables used are as described in a previous 
analysis of rs1421085 (FTO)28. We mean-imputed missing observations of the 
lifestyle and environmental variables. For mean and variance covariates, the test 

SNP, age, sex, age2, age3, age ×  sex, age2 ×  sex, age3 ×  sex, genotyping array, and the 
40 principal components provided by UK Biobank20 were used. In addition to these 
covariates, the lifestyle and environment variables and their interaction with the 
test SNP were also used as mean covariates. We fitted the models in the combined 
sample comprised of both the related and unrelated subsamples. To help control 
for relatedness and confounding variables, we modeled the random effects for the 
1,000 SNPs selected for the analysis of the related sample, excluding the SNPs on 
the same chromosome as the test SNP.

Diabetes and rs1801282. To test for an interaction between rs1801282 and 
diabetes status, we used Data-Field 2443 (diabetes diagnosed by doctor). We 
removed those who answered ‘Do not know’ and ‘Prefer not to answer.’ For 
mean and variance covariates, rs1801282 genotype, age, sex, age2, age3, age ×  sex, 
age2 ×  sex, age3 ×  sex, genotyping array, and the 40 principal components provided 
by the UK Biobank20 were used. In addition to these covariates, ‘diabetes diagnosed 
by doctor’ and its interaction with rs1801282 were also used as mean covariates.

Birth weight and rs900400. If rs900400 affects BMI variability through birth 
weight, then fitting birth weight and rs900400 jointly should reduce the estimated 
variance effect of rs900400. To test this, we used the self-reported birth weight data 
(Data-Field 20022) available for 230,477 genotyped participants without missing 
calls for rs900400. For mean and variance covariates, we used rs900400 genotype, 
birth weight, age, sex, age2, age3, age ×  sex, age2 ×  sex, age3 ×  sex, genotyping array, 
and the 40 principal components provided by the UK Biobank20. The estimated 
log-linear variance effect of rs900400 in this model was 0.0186 (s.e. =  0.0043). After 
dropping birth weight from the model, the estimated log-linear variance effect of 
rs900400 in the same sample was 0.0181. The increase in the variance effect when 
fitting rs900400 jointly with birth weight may be due to the fact that higher birth 
weight is associated with decreased variability of BMI (P =  9.0 ×  10−9, two-sided 
Z-test), whereas the birth weight increasing allele of rs900400 is associated with 
increased BMI variability. This implies that the birth weight effect of rs900400 
could be masking its effect on BMI variability, independent of birth weight. This 
is in direct contradiction to the hypothesis that the effect of rs900400 on BMI 
variability is due to rs900400’s effect on birth weight.

Variance effects of leptin SNPs. We took summary statistics from a GWAS of 
circulating leptin levels adjusted for BMI29. (Because higher BMI is associated with 
higher leptin levels, this analysis looked for SNPs that affect leptin levels through 
pathways other than BMI.) We took the intersection of the SNPs from the leptin 
study with the SNPs on the UK Biobank array. We constructed a list of 100 SNPs 
at approximately independent loci with evidence for association with leptin. We 
added SNPs to our list in order of negative log P value for a leptin effect. To ensure 
the SNPs in our list were approximately independent of each other, we only added a 
SNP to the list if it had an r2 <  0.1 with all the SNPs already in the list. To estimate the 
expected dispersion effect per unit increase in leptin effect, we used the same kind 
of procedure we used to estimate the mean–variance relationship parameter, rav (see 
earlier). We used robust regression (M-estimation) with weights equal to the inverse 
of the sample variance of the dispersion effect, and we adjusted the regression 
coefficient for downward bias due to noise in the estimation of the leptin effects.

As a check, we performed an analogous analysis for the top 100 lead SNPs from 
independent loci for leptin adjusted for BMI, and regressed their additive effects 
for BMI on their effects for leptin adjusted for BMI. As expected (because leptin 
levels have already been adjusted for BMI), we saw no significant effect (P =  0.47).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. The ‘hlmm’ code used is freely available under an MIT license at 
https://github.com/AlexTISYoung/hlmm.

Data availability
The primary data analyzed in this study come from the UK Biobank. Applications 
for access can be made on the UK Biobank website.
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promote consistency and transparency in reporting. All life sciences submissions use this form; while some list items might not apply to an individual 
manuscript, all fields must be completed for clarity. 
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    Experimental design
1.   Sample size

Describe how sample size was determined. We used individuals of white, British ancestry in the UK Biobank, for whom 
we also had data on body mass index (BMI). 

2.   Data exclusions

Describe any data exclusions. We excluded individuals flagged as problematic by the UK Biobank quality 
control documentation: excess heterozygosity, putative sex chromosome 
aneuploidy, or excess relatives.

3.   Replication

Describe whether the experimental findings were reliably reproduced. We replicated the variance effects of SNPs rs900400 and rs1801282 in 
data from an external meta-analysis (GIANT). 

4.   Randomization

Describe how samples/organisms/participants were allocated into 
experimental groups.

Not applicable to a genome-wide association study. 

5.   Blinding

Describe whether the investigators were blinded to group allocation 
during data collection and/or analysis.

Not applicable to a genome-wide association study. 

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods 
section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample 
was measured repeatedly. 

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted

A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this study. HLMM (Heteroskedastic linear mixed model) software. Available under 
MIT license at https://github.com/AlexTISYoung/hlmm

For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon 
request.  The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of unique 
materials or if these materials are only available for distribution by a 
for-profit company.

Not applicable to a genome-wide association study

9.   Antibodies

Describe the antibodies used and how they were validated for use in 
the system under study (i.e. assay and species).

Not applicable to a genome-wide association study

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. Not applicable to a genome-wide association study

b.  Describe the method of cell line authentication used. Not applicable to a genome-wide association study

c.  Report whether the cell lines were tested for mycoplasma 
contamination.

Not applicable to a genome-wide association study

d.  If any of the cell lines used in the paper are listed in the database 
of commonly misidentified cell lines maintained by ICLAC, 
provide a scientific rationale for their use.

Not applicable to a genome-wide association study

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived materials used in 
the study.

Not applicable to a genome-wide association study

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population characteristics of the 
human research participants.

General descriptions have been provided by the UK Biobank
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