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Deconstructing the sources of
genotype-phenotype associations
in humans
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Efforts to link variation in the human genome to phenotypes have progressed at
a tremendous pace in recent decades. Most human traits have been shown to be
affected by a large number of genetic variants across the genome. To interpret
these associations and to use them reliably—in particular for phenotypic
prediction—a better understanding of the many sources of genotype-phenotype
associations is necessary. We summarize the progress that has been made in
this direction in humans, notably in decomposing direct and indirect genetic effects
as well as population structure confounding. We discuss the natural next steps in
data collection and methodology development, with a focus on what can be gained
by analyzing genotype and phenotype data from close relatives.

N
ot long ago, genetic analyses were per-
formed using trait values (phenotypes) in
families, without genetic data. The discov-
ery of readily measurable genomic markers
enabled the identification of disease genes

by linkage analysis, without prior knowledge of
the underlying mechanisms (1). This led to the
identification of the gene responsible for the X-
linked phagocytic disorder chronic granulom-
atous disease in 1986, followed by those for other
Mendelian diseases such as cystic fibrosis (2) and
Huntington’s disease (3) aswell as the breast cancer
genes (4, 5). This approach was also applied to the
studyof commoncomplexdiseases, including type2
diabetes, but failed to provide replicable findings.
The second major development came with

high-throughput single-nucleotide polymorphism
(SNP) arrays, which allowed for the genotyping of
hundreds of thousands of SNPs simultaneously,
giving rise to the genome-wide association study
(GWAS) (6). A GWAS tests each SNP for asso-
ciation with the phenotype, without family data.
The success of GWAS started with the discovery
that CFH contributes to age-related macular de-
generation; that analysis was based on 96 cases
and50 controls (7). Subsequent increases in sample
size, with some nowmore than 2million (8), have
led to the discovery of thousands of genetic variants
affecting hundreds of human traits. Results from
GWAS hold the promise of identifying novel drug
targets (9, 10), among other applications.
The power of a GWAS to identify a trait-

affecting SNP depends on the fraction of trait
variation explained by the SNP, which increases

in proportion to the square of the effect size and
theheterozygosity. Because heterozygosity is higher
formore common variants, initial successes were
mainly for susceptibility variants with a minor
allele frequency above 5%. Even if a common
variant is not directly analyzed, it is likely to
be strongly correlated with a genotyped SNP
nearby, because of the lack of ancestral recom-
bination events between them. This correlation is
termed “local” linkage disequilibrium (LD). Non-
local LD—correlations between variants that are
not physically close—can result from nonrandom
mating. As a result of local LD,GWASusually does

not directly identify the specific causal variant, but
only localizes its approximate genomic position.
Fine-scale mapping, which often requires func-
tional analysis and experimentation, is needed to
identify causal variants (11).
The majority of common variants found by

GWAS to affect disease risk have low to modest
effects (increasing the odds of disease by less
than a factor of 1.5 per risk allele) (12, 13). Applica-
tion of GWAS towhole-exome andwhole-genome
sequencing, along with statistical imputation of
sequence-level variants into samples genotyped
by SNP arrays, has led to the discovery of some
rarer variants with large effects (14). Although the
trait variance explained by genome-wide signifi-
cant (GWS) loci has increased, for most complex
traits, the variance explained byGWS loci is only a
fraction of the estimated heritability. This gap,

labeled the “missing heritability,” is discussed
below (12, 15).
For complex traits, identifying all the causal

variants and elucidating their underlying mech-
anisms remains a distant goal. However, GWAS
data can be used for prediction from genotypes,
notably with polygenic scores (PGS). PGS com-
bines the estimated effects of multiple genetic
variants to provide a predicted trait value for an
individual. Many applications of PGS have been
investigated, such as identification of individuals
with substantially elevated genetic risk of heart
disease (16). Despite the demonstrated value of
PGS, questions regarding robustness and inter-
pretation (i.e., what is driving the predictive power)
have started to surface (17, 18).
In GWAS, it is widely acknowledged that asso-

ciations can be biased by population stratifica-
tion, primarily association between ancestry and
environment effects. Methods adjusting for an-
cestry, together with replication (19), lend confi-
dence thatmost GWS associations with common
SNPs are true positives. However, this does not
mean that bias is eliminated, nor the nature of
genotype-phenotype associations properly char-
acterized. We aim to lay out here the different
contributions to genotype-phenotype association,
explain the difficulties they introduce, and pro-
pose possible solutions.

Effects captured by GWAS associations

The association between a genetic variant and
a phenotype can be decomposed into the direct
effect of the variant, the indirect genetic effect
of the variant, and confounding effects (Fig. 1).
An example would be a variant that has a direct
effect on educational attainment (EA) when in-
herited, as well as an indirect effect through
parental behavior/nurture (20). The same vari-
ant could also have an indirect effect on health
through parental nurture, but little to no direct
effect. Direct effects incorporate a wide range
of causal pathways, some neither simple nor
“direct”; for example, variants in CHRNA5 af-
fect lung cancer risk through their association
with smoking quantity (21). Furthermore, the
direct effect here can include effects of other
variants in local LD. Note that typical GWAS
conducted without family data can only estimate
the sum of the direct and indirect effects (com-
bined effect), not the two separately.
Under an additivemodel for the joint effects of

variants, we define a genetic component as a
linear combination of the genotypes of all the
causal variants with weights proportional to the
true (direct, indirect, or combined) effects (Fig. 2).
The genetic components for direct effect and
indirect effect are distinct, but they can be cor-
related with a strength that depends on the gen-
etic correlation between the proband phenotype
of interest and the phenotypes of the relatives
through which the indirect effects are mediated.
As an example, this correlation is probably strong
for EA and weak for body mass index (BMI)
(20). The relative strengths of these two genetic
components and their correlation determine the
correlations with the combined-effect genetic
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component. Because the PGS constructed from
a typical GWAS uses estimates of the combined
effects, its predictive power can sometimes be
substantially stronger thanwhat can be explained
by the direct effects alone (20).
Genetic effects can contribute to the associa-

tions between traits through pleiotropy. A two-
trait model of pleiotropy (Fig. 2, top) of the
combined effects has three parameters: the var-
iances explained by the combined-effect genetic
components of the two traits, and the correlation
between them. This correlation has been esti-
mated for many pairs of traits using GWAS data
(22). By separating out direct- and indirect-effect
components, the model (Fig. 2, bottom) has
10 parameters, including the magnitudes of four
direct- and indirect-effect genetic components,
and six correlations. The full model cannot be
estimated using standard GWAS, so we currently
have little understanding of the extent to which

direct and indirect genetic effects contribute dif-
ferently to pleiotropy.

Confounding effects

The association between a genetic variant and
a phenotype could reflect, in part, a correlation
with some other causal phenomenon (environ-
mental or genetic) rather than a true causal
effect of the SNP on the phenotype. This type of
confounding arises from the presence of non-
random mating leading to population structure.
There are at least three sources of confounding
in GWAS: (i) environmental confounding, where
allele frequencies and environmental effects vary
in a correlated way across different geographic re-
gions or subpopulations; (ii) genetic confound-
ing, when allele frequency differences between
subpopulations correlate with frequency differ-
ences of other alleles with causal effects; or (iii)
assortative-mating confounding, which occurs

when there is assortative mating for the trait (or
a correlated trait), a variant with a causal effect
on the trait becomes correlated with other var-
iants with causal effects, and its association with
the trait then captures its own causal effect plus a
fraction of that of the other variants. These forms
of confounding are conceptually different, but in
practice they are often intertwined.

Adjusting for confounding in GWAS

Principal component (PC) adjustment is a com-
mon technique used to remove some of the pop-
ulation structure–related confounding effects (23).
Ideally, the principal components used for adjust-
ments are strongly correlated with the environ-
mental confounding component and uncorrelated
with the direct genetic effect component. If the
direct effect component is substantially correlated
with the confounding components, PC adjustment
will remove some of the direct genetic effects as
well as confounding effects.
The assortative-mating confounding compo-

nent (iii) is, by its nature, nearly perfectly cor-
related with the sum of the direct and indirect
components. Assortative mating for traits such
as height and EA (24) leads to nonlocal LD of
variants with direct and indirect effects, which
PCs capture. Thus, in theory, PC adjustment could
adjust away most of the direct effect component.
In practice, this does not happen. Even with a
very large sample size, the inferred PCs are likely
to be mostly noise beyond a few strong (often
geographic) signals. Results from the UKB white
British (WB) sample highlight this point (Fig. 3):
Beyond the first eight strongest PCs, PCs com-
puted from a sample of 272,519 individuals (25)
appear to bemainly driven by sampling noise and
local LDwithin chromosomes. The noise canmask
subtle population structure that can lead to con-
founding in GWAS even after PC adjustment (26).
Fitting linear mixed models (LMMs) is an

alternative to PC adjustment. These methods
perform a type of regression on a set of SNPs
where the effect of each SNP is modeled as a
“random effect” drawn from a normal distribu-
tion (27). LMMs have long been used for trait
prediction in animal breeding (28). In human
studies, LMM association testing typically con-
sists of estimating the effect of a focal SNP as a
“fixed effect” while modeling random effects for
a set of other SNPs.NaïveLMMcomputation scales
with the cube of sample size, and thus alternative
computational approaches have been developed
to handle large GWAS sample sets (29).
The appeal of LLMs is that they enable im-

proved modeling of population stratification
and sample relatedness (27). LMMs are often
used in combination with PCA adjustment and
can account for more complicated patterns of
stratification by modeling the effects of (nearly)
all measured SNPs, capturing both real genetic
effects and stratification effects (27). Furthermore,
LMM methods can lead to improved estimation
of SNP effects and their sampling errors over
linear regression in the presence of sample re-
latedness (27). LMMs can also reduce bias in SNP
effect estimates due to assortative mating (30).
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Fig. 1. The signals captured by GWAS of distantly related individuals and families.When
based on distantly related individuals, estimates of effect sizes of SNPs on a trait include direct
genetic effects (black) as well as a number of other effects, including confounding due to population
structure (gray), assortative mating for the trait or a correlated one (burgundy), indirect genetic
effects from parents (blue), and sib effects (peach). Family-based GWAS (such as the use of a trio)
uses parental genotypes as controls to separate direct from indirect genetic effects and other
confounding effects (20), as illustrated in the decomposition to the right. In this figure, we ignore
effects of local LD.
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However, current LMMGWASmethods do not re-
move the contribution of indirect genetic effects.

Using family genotype data

Given the parental genotypes, an offspring’s
genotype is determined by random segregation
of genetic material during meiosis. This random
segregation is uncorrelated with indirect genetic
effects from relatives and other confounding ef-
fects. Parental genotypes can thus be used as con-
trols to obtain unbiased estimates of direct genetic
effects (20, 31) (Fig. 1). Similarly, genetic differences
between siblings are a result of randomMendelian
segregation in the parents during meiosis. The
genetic differences between siblings are there-
fore not confounded with indirect genetic effects
fromparents, population stratification, and assort-
ative mating. However, methods using the differ-
ences in sibling genotypes estimate the direct effect
minus the indirect effect from the sibling, and hence
only provide unbiased direct-effect estimateswhen
the indirect genetic effect of the sibling is zero.
The study of indirect genetic effects has a

long history in animal breeding (13). In humans,
most studies of indirect genetic effects have used
PGS derived from GWAS that do not distinguish
between direct and indirect genetic effects (Fig. 4)
(20). However, when direct and indirect genetic
effects are not perfectly correlated, that approach

cannot give the full picture (32). Ideally, GWAS
should be performed with parental or sibling
genotypes as controls and using models with
indirect genetic effects. However, the power of
this approach is currently limited because large
samples with genotyped siblings and/or parents
are uncommon. Furthermore, as only aroundhalf
of the genetic variation in a population is within-
family, substantially larger samples of families
are required to obtain the same study power as
standard GWAS analysis. Therefore, methods
combining information from standard GWAS
and from analysis of families are needed.

Heritability

Traditionally, heritability has been estimated from
comparing correlationsbetween identical andnon-
identical twins. In addition to identifying specific
causal loci, it is possible to use GWAS data to
estimate the phenotypic variation explained by
the genetic variation captured by the SNPs (and
variants in LDwith them) on a genotyping array,
called “SNP heritability” or h2SNP (33). Estimates
of h2SNP imply that common genetic variants
assayed on a typical genotyping array collectively
explain substantially more phenotypic variance
than the GWS variants. However, estimates of h2SNP
tend to be substantially lower than estimates of
heritability from twin studies (15), part of the
“problem of missing heritability.” Some, but far
fromall, of this gap is explainedby effects of imputed
variants that are not in strong LD with markers
on a typical genotyping array (13, 34). One possi-
bility is that much of the remaining missing herit-
ability is explained by very rare variants (35).
A widely usedmethod, GREML, estimatesh2SNP

by measuring the strength of the relationship
between phenotypic similarity and genome-wide
genetic similarity (estimated from SNPs), which
varies even for the distantly related individuals
typically used in GWAS (36). This approach pro-
vides an estimate of the total variance explained
by the combined direct and indirect effects of
probands’ alleles (20, 31). The extent to which
indirect genetic effects and population stratifica-
tion have contributed to estimates ofh2SNP (Fig. 4)
is not known, nor is the bias induced by assorta-
tive mating on both within- and between-family
estimates of heritability.
It is also important to note that the total var-

iance explained by the combined direct and in-
direct effects differs from the traditionally defined
heritability, which is about direct effects only.
However, it is a parameter of interest, as it de-
fines an upper bound of genetic prediction from
probands’ alleles. An implication is that the upper
limit of genetic prediction for a trait could often
be larger than the heritability (18).

Some recent methodological
developments

LD score regression

With the explosion of GWAS, approaches have
been developed to better use and interpret their
results. Notably, LD score regression (LDSC) was
developed to distinguish the effects of confounding
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Fig. 2. Two-trait genetic models with direct
and indirect effects combined or separated.
For a trait, assuming an additive model, the
genetic component combining direct and indirect
effects is gd+h =

P
i(di + h i)gi, where gi, di, and hi

denote the genotype, the direct effect, and the
indirect effect of variant i, respectively. Top: With
two traits (1 and 2), there are two magnitudes and
one correlation. For each trait, the combined
genetic component can be separated into the
direct-effect component, gd =

P
idigi, and the

indirect-effect component, gh =
P

ih igi. Bottom:
The two-trait model becomes one with four genetic
components and six pairwise correlations between
them. For the canonical example illustrated here,
where trait 1 could be EA and trait 2 could be BMI,
the size of a dot indicates the magnitude of a
component, and the thickness of a connecting line
indicates the strength of the correlation.

Box 1. Glossary.

Assortative mating: When couples
that produce offspring select
one another on the basis of particular
phenotypes.

Fine-scale mapping: Refers to
approaches that aim to identify
which variant or variants are likely to
be causal among the set of associated
variants identified in a GWAS.

Heritability: Measures the proportion
of phenotypic variation explained by
the direct effects of all genetic variants
in a population at a given time.

Heterozygosity: The probability that
two alleles at a site differ; assuming
Hardy-Weinberg equilibrium and
considering a biallelic site, this
measure of genetic diversity is given
by 2p(1 – p), where p is the allele
frequency.

Imputation: A statistical method
that infers the genotypes of
individuals at variants not directly
measured on a genotyping array
by reference to complete
genome sequence data.

Indirect genetic effect: The effect
of a genetic variant in one individual
on the trait of another individual
through the environment.

Genome-wide significant (GWS)
associations: Variants associated
with the phenotype at a significance
level chosen to overcome the
multiple testing burden, usually set
at P < 5 × 10–8.

Linkage analysis: Tests for cosegrega-
tion of phenotypes and genotypes
within families.

Pleiotropy: The common observation
that many SNPs that are associated
with one trait are also associated
with other traits. Related to the
concept of genetic correlation.

Principal component: A principal
component is an inferred axis
of genetic variation in a sample.
A principal component is a linear
combination of genotypes of SNPs,
where each SNP has a “loading” giving
its contribution to the principal
component.

Polygenic score (PGS): Weighted
sum of alleles carried by an individual,
where the weights are given by
effect sizes estimated in GWAS.
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due to population stratification from causal gen-
etic effects on GWAS test statistics (37). Assum-
ing a highly polygenic architecture, the GWAS
test statistic for an individual SNP is expected
to increase with its LD score (a measure of the
genetic variation tagged by a SNP through local
LD) because of increasing correlationwith causal
variants. However, the average test statistic across
all SNPs is raised by population stratification, due
to correlation between alleles and differences
in mean trait values between subpopulations
(37–39). By estimating how much population
stratification–induced confounding inflates the
average test statistic, the LDSC intercept can be
used to adjust the GWAS test statistics. LDSC can
also be used to estimate the correlation between
SNP effects on different traits (22), to partition
contributions to SNP heritability from different
functional categories of variants (40), and to faci-
litate multitrait meta-analysis (41).
A key assumption of LDSC is that allele fre-

quency differences between subpopulations are
independent of LD scores (37). However, a cor-
relation between LD scores and allele frequency
differences can be induced by forms of linked se-
lection such as background selection (26). Thus,
questions remain about the reliability of the LDSC
measure of population stratification bias.

Mendelian randomization

Mendelian randomization (MR) uses genetic data
to improve causal inference in epidemiology (42).
If a genetic variant affects trait A, and trait A
affects trait B, then variants that affect trait A
are expected to affect trait B. Genetic variants that
affect trait A can be used to determine whether
an association between trait A and trait B reflects
a causal influence of trait A on trait B, given that
the genetic variants affect trait B only through
their effect on trait A, and that the genetic var-
iants are not correlated with any confounding
factors. MR has proven successful in refuting false
causal hypotheses derived from observational
data, such as the association between HDL choles-
terol levels and cardiovascular disease (43) and
the reduced risk of cardiovascular disease inmod-
erate drinkers in Western societies (44).
MRusually relies on SNP effect estimates from

GWAS without families, which can be biased by
population stratification, indirect genetic effects
from relatives, and assortativemating (45).Within-
familyMRmethodshave beenproposed to address
these concerns and have shown that previous
MR estimates of causal effects of height and BMI
on EA were spurious (45).
A further challenge for MR analyses is wide-

spread pleiotropy: If a SNP affects trait B through
a trait other than trait A, then it is not a valid
instrument for inference of the causal effect of
trait A on trait B. Although methods have been
developed to address this problem, their effec-
tiveness can depend on prior knowledge about
the confounding pathway (46).

Gene-by-environment interactions

A gene-environment (GxE) interaction occurs
when a genetic variant’s effect on a trait differs in

different environments (47). Such GxE interactions
are distinct from gene-environment correlation,
which can result from, for example, indirect gen-
etic effects from relatives. In humans, robustly
replicated examples of GxE interactions are rare
outside of pharmacogenomics (48,49). One excep-
tion is an interaction between variants in the FTO
locus and physical activity affecting BMI (50, 51).
The power to detect GxE interactions in GWA

studies is likely to have been low as a result of
small effect sizes and multiple-testing burden.
One way to increase the power to detect GxE is
to look for interactions between environmental
factors and PGS (52, 53). This method is effective
when genetic variants affecting a trait interact
with environmental factors in similar ways, but
cannot identify interactions between environmen-
tal factors and specific genetic variants. LMMs can
be applied to detect a component of phenotypic
variance arising from the interaction between
genome-wide genetic variants and an environ-
mental factor (54) but cannot pinpoint inter-
actions with specific genetic variants. Genetic
variants involved in GxE interactions affect the
variability of a trait (55, 56), which can be exploited
to reduce the search space of potential interactions
by restricting to variants with evidence for an
effect on phenotypic variability. However, meth-
odological challenges remain: Interaction effects
and genetic effects on phenotypic variability are

sensitive to the scale ofmeasurement (56, 57), and
the effects of population stratification on esti-
mates of GxE are not well characterized. Further-
more, the causality of GxE interaction effects is
hard to establish, because the interactionmay be
with an unmeasured environmental factor that is
correlated with measured environmental factor(s),
and the broader socioenvironmental factors that
may structure the environmental exposure are
often unknown.

Portability of phenotypic prediction

The accuracy of prediction based on PGS depends
on the trait’s heritability and the power of the
existing GWAS (notably on the sample size and
genetic architecture) (28). For a handful of traits
[such as height, for which the current prediction
accuracy is ~25% (58)], existing scores are already
informative in sets of individuals similar to those
in which the GWAS was conducted.
Polygenic scores do not perform as well in

predicting phenotypes of individuals that differ
from those included in the GWAS set. Some of
the reasons are understood and arise from diffe-
rences in ancestry. Notably, because PGS consists
of a weighted sum of allele counts and because
allele frequencies vary across the globe (due to
genetic drift and natural selection), alleles that
contribute to trait variation in the GWAS are less
likely to be present ormay even be absent inmore
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Fig. 3. Behavior of principal components of 272,519 UK Biobank samples.We investigate the
degree to which principal components are capturing real population structure by examining whether
the genetic variance (eigenvalues) explained by the top 40 principal components inferred from
146,082 SNPs in 272,519 UK Biobank White British (WB) samples replicates in an independent
sample of WB. A replication eigenvalue above 1 indicates that the inferred principal component is
capturing replicable correlations between SNPs, either local LD (within a chromosome) or population
structure (mostly between chromosomes). Original (black circles): eigenvalues of the principal
components in the original set of 272,519 WB individuals. Replication (blue triangles): eigenvalue
equivalents, i.e., variances of the linear combinations of SNP genotypes using weights inferred
from the original set and standardized genotypes in the replication set of 64,969 WB individuals.
Replication (between chromosomes only) (red crosses): using the same replication set, but
eigenvalue equivalents computed by ignoring the covariances of SNP pairs within the same
chromosomes, and counting only the covariances of SNP pairs on different chromosomes, which
includes 94.8% of all SNP pairs. The average eigenvalue for the last 32 PCs decreases from 4.37 for
the original set to 2.61 for the replication set and further to 1.03 for the between-chromosome set,
indicating those PCs are mostly capturing noise and local LD rather than population structure.
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distantly related individuals. The prediction accu-
racy of PGS is also expected to decrease across
ancestry groups because GWAS do not identify
causal sites, but sets of possible causal sites in
local LD; because local LD patterns depend on
population histories, the associations observed in
one population will tend to capture causal SNPs
less well in others. As expected, recent studies
report that the incremental R2 for a wide range
of traits is lower in individuals whose ancestries
differ from those of the GWAS set (59, 60).
In addition to allele frequency and LD differ-

ences, other factors may contribute to decreased
PGS predictive ability: The extent of environmen-
tal variancemaydiffer among groups of dissimilar
ancestries or selected by distinct enrollment cri-
teria (18), and phenotypemeasurementmaydiffer
across groups. Moreover, effect sizes of variants
may differ as a result of gene-gene (GxG) and
GxE interactions. Changes in effect sizes may be
particularly important for traits towhich indirect
effects or assortative mating make a large contri-
bution, as such factors could be contingent on cul-
tural and environmental factors. Here, it becomes
essential to decompose the nature of the signals
identified in GWAS in order to identify which
components (e.g., direct versus indirect effects)
provide more readily generalized predictions.

Outlook

Formany complex traits, GWAS has changed the
landscape of genetic investigations and our under-
standing of genetic architectures.Where once there
was not a single reliably replicated association,
now there are thousands of variants with robust
associations.Notably,GWASdoesnot require family
data, thereby facilitating the collection of large
sample sizes. Recently, however, the unique proper-

ties of family data are being brought back to the
forefront. For one, some rare variants with strong
effects only exist in extended families. Most im-
portant, fordeeperandmoresubtlequestions, family
data such as parent-offspring trios and sib pairs
may be necessary to discriminate direct from in-
direct effects and other confounding factors. Statis-
tically, one natural extension is to extend the study
unit from an individual to the nuclear family. In
this regard, it is worth noting that as sample sizes
increase, close relatives will inevitably be collected
as larger fractions of the population are sampled.
A remaining challenge is the issue of ascer-

tainment bias, which occurs when study samples
differ systematically from the population. Most
sample sets are biased toward individuals of
European ancestry (60) as well as toward individ-
ualswith higher social economic status and greater
health (61), along with other unknown biases.
While not necessarily introducing false positives,
these ascertainment biases limit the portability
of GWAS findings (18, 60). Particularly salient in
this regard are GxE interactions, not only over
space—that is, across populations at a given time—
but over time, given themassive secular trends in
environment that have occurred and continue to
occur. This consideration applies to health traits,
education-related traits, and fertility traits, which
affect selection pressures. In this regard, it is im-
portant to sample not only different ancestries
and current environments but, where possible, to
also collect data on multiple generations.
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Fig. 4. Shrinkage of polygenic prediction and heritability estimates using within-family
designs using Icelandic data. (A) An estimate of SNP heritability using transmitted alleles is given

by h2SNP; an estimate of SNP heritability using a within-family method, relatedness disequilibrium

regression (RDR) (31), is given by h2RDR‐SNP. Statistically significant differences (P < 0.05, one-sided

z-test) were observed for EA h2SNP=h
2
RDR‐SNP = 1.72 (P = 7.6 × 10−3) and height h2SNP=h

2
RDR‐SNP = 1.24

(P = 0.015). (B) The variance explained by regression of trait onto polygenic score is given by R2
poly;

the variance explained by a polygenic score when its effect is estimated using a within-family

(trio) design is given by R2
poly:d (20).We emphasize the relative size of the estimates from within-family

methods (h2RDR‐SNP andR
2
poly:d) to between-familymethods (h2SNP andR

2
poly). Between-familymethods capture

indirect genetic effects from relatives and, potentially, population stratification and assortative mating in

addition to the heritability captured by within-familymethods.Trait abbreviations: BMI, bodymass index; EA,

educational attainment (years).
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