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Supplementary Figure 1 

Determination of offspring relatedness 

The diagram shows how the identity-by-descent sharing states of two individuals ࢏ and ࢐ are determined by the identity-by-descent 
sharing states of their parents and the segregation events in the parents during meiosis. The identity-by-descent sharing states of ࢏ and ࢐ are represented by the four chromosomes in the centre, with black bands indicating regions shared identical-by-descent. The four 
chromosomes represent the four possible pairs of homologous chromosomes (maternal-maternal, paternal-maternal, maternal-paternal, 
and paternal-paternal): the identity-by-descent sharing between the chromosome inherited from ࢏ 's father, Pi, and ࢐ 's mother, Mj, etc. 
The identity-by-descent sharing states of the four possible pairs of parents, one from each individual, are shown in the corners (Pi and 
Pj, Pj and Mi, Pj and Mi, and Mj and Mi). The segregation event in ࢏ 's father is represented by I(Pi), the segregation event in ࢐ 's mother
represented by I(Mj), etc. Note that for simplicity we ignore recombination in this diagram. See the Relatedness Disequilibrium Lemma
in the Supplementary Note for a mathematical description of this process and its consequences. 



 
 

 

Supplementary Figure 2 

RDR variance component estimates 

Estimated variance components of the RDR covariance model for 14 quantitative traits in Iceland (Supplementary Table 4), expressed as a % of 
phenotypic variance, shown with intervals +/- 1.96 standard errors around the estimate. Trait abbreviations: BMI, body mass index; AFCW, age at 
first child in women; AFCM, age at first child in men; education (years), educational attainment (years); HDL, high density lipoprotein; MCH, mean 
cell haemoglobin; MCHC, mean cell heamoglobin concentration; MCV, mean cell volume.   



E[ĥ2
] SD[ĥ2

] Est. SE[ĥ2
]

Trait Max Lik. L.Sq. Max Lik. L.Sq. Max Lik.

additive 39.3 (0.62) 39.8 (0.65) 13.81 14.51 14.10

regional 38.3 (0.6) 40 (0.71) 13.50 15.60 13.16

maternal environment 38.9 (0.58) 37.6 (0.73) 13.03 15.80 12.42

genetic nurturing 39.4 (0.49) 39.8 (0.68) 10.99 15.28 10.58

Supplementary Table 1: Comparison of maximum likelihood and least-squares
approaches to fitting RDR variance components. For each of four simulated traits
based upon actual genetic data in Iceland, we give the mean estimate, along with its stan-
dard error in brackets, of the heritability, ĥ2, from fitting the RDR covariance model by
both (restricted) maximum likelihood (Max Lik.) and by least-squares regression (L.Sq.).
The heritability estimates are expressed as a percentage of the phenotypic variance, and
the true heritability was 40% for all the traits. We give the standard deviation of ĥ2 from
the two methods over the 500 independent replicates of each trait (SD[ĥ2]), and the aver-
age estimated standard error of ĥ2 across 500 replicates, ‘Est. SE[ĥ2]’, for the maximum
likelihood method. The regression method removes parent-o↵spring and grandparent-
grandchild pairs from the analysis, whereas the maximum likelihood method considers all
pairs.
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RDR Kinship Kinship F.E.

h2 ve⇠g cg,e h2 h2 vc

additive 39.3 (0.62) -0.3 (0.49) 0.8 (0.71) 40.4 (0.15) 40.5 (0.18) -0.1 (0.14)

genetic nurturing 39.4 (0.49) 9.4 (0.4) 29.2 (0.57) 92.7 (0.094) 82.8 (0.14) 9.9 (0.11)

maternal 38.9 (0.58) 47.5 (0.48) -15.9 (0.67) 76.3 (0.17) 39.9 (0.18) 39.9 (0.11)

regional 38.3 (0.6) 2.1 (0.48) 12.2 (0.7) 59 (0.17) 58.3 (0.2) 0.7 (0.13)

rare SNPs 35.0 (0.64) -0.8 (0.47) 3.4 (0.69) 39.5 (0.15) 39.4 (0.19) 0.1 (0.14)

epistatic 41.3 (0.6) 0.7 (0.5) 1.1 (0.71) 44.2 (0.16) 43.3 (0.19) 1.1 (0.13)

dominance 40.5 (0.63) 1.5 (0.52) -0.1 (0.74) 42.7 (0.15) 41.1 (0.19) 2.0 (0.13)

Supplementary Table 2: Variance components from simulations. The mean variance
component estimates, expressed as a % of the phenotypic variance, from the RDR, Kin-
ship, and Kinship F.E. methods. For the Kinship F.E. method, the vc column gives the
estimate of the variance explained by shared family environment. We determined whether
individuals shared a family environment by whether they shared a mother according to the
deCODE Genealogy database. We simulated 500 replicates of each trait based on actual
Icelandic genetic data for 10,000 individuals. Ten thousand SNPs with median frequency
23% were given additive e↵ects for all the traits other than the rare SNPs trait, for which
2,200 SNPs with frequency between 0.1% and 1% (median 0.26%) were used. The true
(narrow-sense) heritability of each trait was 40%. To this additive genetic component,
only noise was added for the additive trait and the rare SNPs trait. For the epistatic
trait, 10% of the phenotypic variance was due to pairwise interactions between SNPs. For
the dominance trait, 10% of the phenotypic variance was due to dominance e↵ects. For
the other traits, e↵ects representing di↵erent sources of environmental confounding were
added in addition to noise and the additive genetic component. For the regional trait,
each region of Iceland (sysla) was given an e↵ect; for the ‘maternal environment’ trait,
an environmental e↵ect shared between those who share mothers was added. For the
‘genetic nurturing’ trait, the genotypes of the parents were also given e↵ects to simulate
‘genetic nurturing’ e↵ects14, so that true ve⇠g = 10%, and true cg,e ⇡ 28.3%. For the
‘regional’ trait, the Kinship and Kinship F.E. methods also included adjustment for 20
genetic principal components.
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True RDR Kinship Sib-Regression

h2 h2 ve⇠g cg,e h2 h2

additive 0 0.7 (0.5) 0.1 (0.5) 0.7 (0.7) 0.7 (0.1) 0.1 (0.9)

additive 80 79.3 (0.37) -2.1 (0.36) 2.6 (0.46) 80.4 (0.1) 83.1 (0.63)

genetic nurturing 15 14.9 (0.3) 14.2 (0.29) 22.1 (0.38) 72.7 (0.08) 15.4 (0.58)

Supplementary Table 3: Additional simulations with di↵erent variance compo-
nents. The mean variance component estimates, expressed as a % of the phenotypic
variance, from the RDR, Kinship, and Sib-Regression methods. The ‘additive’ trait was
determined by additive, direct genetic e↵ects and noise. For the genetic nurturing trait,
in addition to additive, direct genetic e↵ects explaining 15% of the variance, each genetic
variant in the parents was also given an e↵ect on the proband, a ‘parental genetic nur-
turing e↵ect’14. The parental genetic nurturing e↵ect of each variant di↵ered only by a
constant scale factor from the direct e↵ect of the genetic variant in the o↵spring, so that
ve⇠g = 15, and cg,e ⇡ 21.
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Kinship Kinship F.E. RDR LR

n h2 h2 vc h2 ve⇠g ce,g p

BMI 19589 54.8 (1.7) 46.7 (2.5) 6.6 (1.5) 28.9 (6.3) 2.4 (5.7) 13.4 (7.7) 6.6e-07

height 21802 83.6 (1.2) 78 (1.9) 4.9 (1.2) 55.4 (4.4) 6.7 (4.3) 12.2 (5.6) 1.6e-17

AFCW 22367 34.6 (1.6) 33.5 (2.1) 2.6 (1.3) 22.6 (6) 6.8 (5.2) 2.9 (7.1) 1.1e-04

AFCM 17117 21.6 (1.9) 16.3 (2.6) 5.4 (1.7) 14.9 (7.9) 11.8 (6.8) -4.9 (9.5) 4.0e-03

menarche 11242 51.1 (2.6) 41.9 (4) 7.6 (2.4) 30.9 (10.5) 10.1 (9.5) 2.6 (12.9) 5.6e-03

education (years) 12035 54.6 (2.2) 52.4 (3.7) 3.3 (2.1) 17 (9.4) 6.6 (8.9) 18.2 (11.8) 7.8e-09

total chol. 27320 35 (1.4) 32.2 (1.8) 2.7 (1.1) 30.6 (5) 2.8 (4.3) 0.1 (5.9) 2.5e-01

HDL 24570 49.6 (1.5) 45.1 (2.1) 3.9 (1.2) 44.8 (5.3) 7.7 (4.6) -3.9 (6.4) 2.0e-02

triglycerides 24099 34.7 (1.5) 29.8 (2) 4.7 (1.3) 24.2 (5.7) 1.6 (4.8) 5.1 (6.7) 3.0e-02

fasting glucose 19500 25.7 (1.8) 23.6 (2.3) 3 (1.6) 15.9 (7.2) 4.3 (5.8) 2.9 (8.3) 3.1e-02

creatinine 38929 27.7 (1.1) 22.2 (1.3) 7 (0.9) 22.9 (3.7) 11.9 (3.1) -7.3 (4.3) 3.3e-08

MCH 43917 38.5 (1) 36.8 (1.2) 2 (0.7) 38.5 (3.2) 3.9 (2.6) -3.4 (3.7) 2.0e-01

MCHC 43963 18.4 (0.9) 18.4 (1.1) 0.5 (0.8) 14.9 (3.3) 1.3 (2.7) 1.3 (3.8) 1.5e-01

MCV 43919 40.1 (1) 38.5 (1.2) 1.7 (0.7) 39.1 (3.1) 2.1 (2.6) -1.2 (3.6) 4.9e-01

Supplementary Table 4: Variance component estimates from RDR, Kinship and
Kinship F.E. methods. For each trait, the sample size used is given under ‘n’. Each
variance component estimate is expressed as a percentage of the phenotypic variance and
is followed by its standard error in brackets. For the Kinship F.E. method, the vc column
gives the estimate of the variance explained by shared family environment. We deter-
mined whether individuals shared a family environment by whether they shared a mother
according to the deCODE Genealogy database. We give the p-value from the likelihood
ratio test comparing the RDR covariance model to the model without the parental and
parent-o↵spring relatedness matrices under the ‘LR’ column. Note that all of these es-
timates are from the exact same Icelandic samples with both parents genotyped, so any
di↵erences in heritability estimates are due to methodological di↵erences. Samples were
restricted to those born between 1951 and 1997 for BMI and traits measured from blood,
and samples were restricted to those born between 1951 and 1995 for height. Trait ab-
breviations: BMI, body mass index; AFCW, age at first child in women; AFCM, age at
first child in men; menarche, age at menarche (years); education, educational attainment
(years); total chol., total cholesterol; HDL, high density lipoprotein; glucose, fasting glu-
cose; MCH, mean cell haemoglobin; MCHC, mean cell heamoglobin concentration; MCV,
mean cell volume.
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Kinship F.E. RDR (Max. Lik) RDR (L.Sq.)

n BPG BPG-sysla random BPG BPG-sysla BPG

BMI 19589 46.7 (2.5) 46.3 (2.5) 48.9 (3.5) 28.9 (6.3) 28.7 (6.3) 33.2 (8.3)

height 21802 78.0 (1.9) 78.1 (1.9) 90.4 (2.4) 55.4 (4.4) 55.8 (4.5) 44.8 (9.0)

AFCW 22367 33.5 (2.1) 31.7 (2.1) 29.0 (1.7) 22.6 (6.0) 23.4 (6.0) 25.1 (7.2)

AFCM 17117 16.3 (2.6) 15.5 (2.6) 21.1 (2.1) 14.9 (7.9) 14.9 (7.9) 16.5 (8.8)

menarche 11242 41.9 (4.0) 41.2 (4.0) 40.1 (2.8) 30.9 (10.5) 31.0 (10.6) 33.4 (13.5)

education 12035 52.4 (3.7) 50.6 (3.8) 45.5 (2.2) 17.0 (9.4) 15.7 (9.5) 9.2 (13.5)

total chol. 27320 32.2 (1.8) 32.1 (1.8) 29.7 (2.4) 30.6 (5.0) 30.7 (5.0) 32.4 (5.7)

HDL 24570 45.1 (2.1) 45.0 (2.1) 46.3 (2.7) 44.8 (5.3) 44.1 (5.3) 46.5 (6.6)

triglycerides 24099 29.8 (2.0) 29.6 (2.0) 33.8 (2.7) 24.2 (5.7) 24.1 (5.7) 23.4 (6.5)

fasting glucose 19500 23.6 (2.3) 22.9 (2.3) 23.2 (3.0) 15.9 (7.2) 15.4 (7.2) 15.6 (7.8)

creatinine 38929 22.2 (1.3) 22.1 (1.3) 22.8 (1.7) 22.9 (3.7) 22.6 (3.7) 23.6 (4.1)

MCH 43917 36.8 (1.2) 36.7 (1.2) 40.6 (1.6) 38.5 (3.2) 38.5 (3.2) 38.7 (3.8)

MCHC 43963 18.4 (1.1) 17.9 (1.1) 19.8 (1.6) 14.9 (3.3) 14.9 (3.3) 14.3 (3.5)

MCV 43919 38.5 (1.2) 38.5 (1.2) 40.7 (1.6) 39.1 (3.1) 39.1 (3.1) 39.3 (3.8)

Supplementary Table 5: Robustness of heritability esitmates. Here we show RDR
and Kinship F.E. heritability estimates from the sample with both parents genotyped
(BPG), which is the sample used for the main results in the Main Text; heritability esti-
mates from the sample with both parents genotyped after adjusting for mean di↵erences
between di↵erent regions (syslas) of Iceland (BPG-sysla); and Kinship F.E. heritability
estimates from a random sample from all of the genotyped Icelandic individuals (ran-
dom). The random sample was chosen to be of the same size as the sample with both
parents genotyped, 54,888. We also show RDR estimates when estimated by least-squares
regression of the sample phenotypic covariance matrix on the the elements of the three
relatedness matrices, excluding parent-o↵spring and grandparent-grandchild pairs (Meth-
ods). We estimated the standard errors for the least-squares estimator using a procedure
that takes into account dependence between pairs (Supplementary Note).
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trait study twin pairs ages estimate method

BMI Carlsson36 16,732 58.7 (mean) 65 (3.8) ACE
height Silventoinen37 8,747 20-40 81 ACE
menarche Baker38 756 16-17 75 (6.9) ACE
education Branigan23 32,814 NA 43.2 (3.6) ACE
total chol. Rahman39 9,066 66.2 (mean) 57 (3.8) 2(rMZ � rDZ)
HDL Rahman39 9,086 66.2 (mean) 69 (3.1) 2(rMZ � rDZ)
triglycerides Rahman39 9,072 66.2 (mean) 61(3.7) 2(rMZ � rDZ)
fasting glucose Rahman39 8,908 66.2 (mean) 59 (4.0) 2(rMZ � rDZ)
creatinine Arpegard40 12,313 64.9 (mean) 59 (1.5) ADE

Supplementary Table 6: Summary of twin studies estimates used. Estimates are
given as percentages of phenotypic variance along with standard errors in brackets. Es-
timates were taken from published studies on the Swedish Twin Registry19, apart from
education, where the estimate is from a meta-analysis of Scandinavian countries, including
Sweden23. We took the published estimate from the ACE (additive-common-environment)
model where available. If ACE estimates were not provided, we calculated a moment based
esimtate of the heritability from the ACE model using published twin correlations (Mate-
rials and Methods). Method abbreviations: ACE, the additive-common-environment twin
model, fit by maximum likelihood; 2(rMZ � rDZ), the moment estimator of the heritabil-
ity from the ACE model, where rMZ is the correlation between monozygotic (MZ) twins,
and rDZ is the correlation between dizygotic (DZ) twins; ADE, the additive-dominance-
environment model, fit by maximum likelihood.
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RDR-SNP RELT-SNP GREML-SNP

genome causal genome causal genome causal

additive 47.1 (0.27) 40.1 (0.12) 48.0 (0.20) 39.8 (0.09) 43.7 (0.11) 40.0 (0.06)

genetic nurturing 45.2 (0.21) 40.1 (0.07) 93.0 (0.32) 74.1 (0.14) 89.2 (0.09) 73.1 (0.05)

maternal 47.2 (0.26) 40.0 (0.12) 47.9 (0.20) 39.9 (0.10) 63.1 (0.13) 44.8 (0.07)

regional 47.4 (0.26) 40.1 (0.11) 46.8 (0.19) 39.3 (0.10) 54.4 (0.13) 43.0 (0.06)

rare 12.0 (0.27) 40.3 (0.08) 13.5 (0.16) 75.1 (0.19) 24.4 (0.12) 40.3 (0.06)

epistatic 47.1 (0.27) 40.1 (0.11) 48.0 (0.21) 39.9 (0.10) 45.6 (0.12) 40.6 (0.07)

dominance 47.4 (0.27) 40.3 (0.12) 48.5 (0.21) 40.3 (0.10) 45.2 (0.11) 40.6 (0.07)

Supplementary Table 7: Variance components from simulations for SNP based
methods. The mean variance component estimates, expressed as a % of the pheno-
typic variance, from the RDR-SNP, RELT-SNP, and GREML-SNP methods. Here, the
GREML-SNP method, using restricted maximum likelihood, was applied to the full sam-
ple without pruning of relative pairs. We provide GREML-SNP estimates here purely as a
point of comparison. We simulated 500 replicates of each trait based on Icelandic genetic
data for 10,000 individuals. Ten thousand SNPs with median frequency 23% were given
additive e↵ects for all the traits other than the rare SNPs trait, for which 2,200 SNPs
with frequency between 0.1% and 1% (median 0.26%) were used. The true (narrow-sense)
heritability of each trait was 40%. We provide two di↵erent estimates for each method:
estimates from using ⇠ 600, 000 genome-wide SNPs typically found on Illumina genotyp-
ing arrays (genome), and estimates from using the causal SNPs for the simulated traits
(causal). For the ‘regional’ trait, the RELT-SNP and GREML-SNP methods included
adjustment for 20 genetic principal components.
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% var RELT-SNP RELT-SNP RDR-SNP LR

n 20 PCs h2
(0 PCs) h2

(20 PCs) h2 ve⇠g ce,g p

BMI 19589 0.46 36.1 (3.4) 31.8 (3.2) 34.2 (2.9) 10.3 (2.8) 1.2 (3.6) 1.6e-14

height 21802 1.17 67.9 (4.7) 55.2 (4.4) 44.5 (2.3) 9.6 (2.2) 14.3 (2.7) 4.0e-59

AFCW 22367 1.29 27.7 (2.5) 20.1 (2.3) 11.7 (2.6) 11.1 (2.6) 2.9 (3.3) 2.3e-26

AFCM 17117 1.01 19.7 (2.5) 12.3 (2.2) 11.5 (3.4) 6.6 (3.2) 0.7 (4.2) 6.0e-06

menarche 11242 0.28 33.9 (4.2) 29.9 (4.1) 26.8 (5.0) 6.5 (4.7) 6.3 (6.2) 5.9e-06

education (years) 12035 2.89 46.2 (4.9) 29.2 (4.4) 17.3 (4.4) 14.8 (4.4) 8.8 (5.6) 6.1e-26

total chol. 27320 0.16 24.2 (2.2) 22.1 (2.1) 23.5 (2.3) 5.7 (2.1) -0.5 (2.7) 1.0e-06

HDL 24570 0.52 29.7 (2.7) 24.2 (2.5) 32.0 (2.5) 8.3 (2.2) 0.5 (2.9) 3.3e-13

triglycerides 24099 0.42 25.8 (2.4) 22.1 (2.2) 23.8 (2.6) 4.7 (2.3) 1.0 (3.0) 1.6e-05

fasting glucose 19500 0.37 16.8 (2.3) 11.3 (2.1) 15.8 (3.1) 8.5 (2.9) -2.6 (3.8) 3.0e-06

creatinine 38929 0.10 17.2 (1.6) 16.0 (1.5) 16.9 (1.6) 8.1 (1.5) -1.9 (2.0) 1.7e-17

MCH 43917 0.10 28.7 (1.9) 27.5 (1.9) 29.3 (1.5) 3.7 (1.3) 0.5 (1.7) 1.4e-07

MCHC 43963 0.14 13.0 (1.2) 11.5 (1.2) 12.5 (1.5) 2.3 (1.3) 0.4 (1.7) 3.4e-04

MCV 43919 0.07 29.8 (2.0) 29.2 (2.0) 31.1 (1.5) 5.9 (1.3) -1.9 (1.7) 1.1e-10

Supplementary Table 8: Variance component estimates from RDR-SNP and
RELT-SNP. For each trait, the sample size used is given under ‘n’. Each variance com-
ponent estimate is expressed as a percentage of the phenotypic variance and is followed by
its standard error in brackets. We give the RELT-SNP estimates without adjustment for
PCs (0 PCs) and with adjustment for 20 PCs. We also give the percentage of trait variance
explained by regression on the top 20 PCs under ‘% var 20 PCs’. We give the p-value from
the likelihood ratio test comparing the RDR-SNP covariance model to the model without
the parental and parent-o↵spring relatedness matrices under the ‘LR’ column. Samples
were restricted to those born between 1951 and 1997 for BMI and traits measured from
blood, and samples were restricted to those born between 1951 and 1995 for height. Trait
abbreviations: BMI, body mass index; AFCW, age at first child in women; AFCM, age at
first child in men; menarche, age at menarche (years); education, educational attainment
(years); total chol., total cholesterol; HDL, high density lipoprotein; glucose, fasting glu-
cose; MCH, mean cell haemoglobin; MCHC, mean cell heamoglobin concentration; MCV,
mean cell volume.
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Sim. S.D. S.E. Est % error
additive 4.40 4.57 3.40

genetic nurturing 7.10 7.26 2.66
maternal 4.60 5.24 13.69
regional 4.30 4.96 14.12
rare 3.70 3.68 -0.22

epistatic 4.60 4.65 0.40
dominance 4.80 4.63 -3.91

Supplementary Table 9: Accuracy of standard error estimates for RELT-SNP.
For the simulated traits, we compare the standard deviation of the simulation estimates
(Sim S.D.) over 500 replicates to the mean estimated standard error (S.E. Est). The
traits are as described in the Methods. The standard deviations and standard errors are
expressed as a percentage of the phenotypic variance. Under ‘% error’, we give the error as
a percentage of the standard deviation of the simulation estimates. The mean error across
the simulated traits was 4.3%. We used a procedure for estimating the standard error of
the RELT-SNP estimates that takes into account the non-independence of di↵erent pairs
of phenotype observations (Supplementary Note).
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1 RDR Theory

1.1 Variance decomposition

Consider a phenotype, Y , variation in which is determined by the direct e↵ect of the
number of copies of an allele at a single locus, g, and an environmental e↵ect, e. Assuming
additivity, the phenotype of the ith individual is

Yi = µ+ �gi + ei, (1)

where µ is some finite constant. The univariate regression estimate of the direct e↵ect �,
�̂, will be biased if g is correlated with e:

E[�̂] = � +
Cov(g, e)

Var(g)
. (2)

This is the basic problem of genetic association testing: inherited genetic variants are often
correlated with environmental influences on a trait, due to family e↵ects and population
stratification.

It is, however, possible to take advantage of the random nature of segregation to
isolate the e↵ects of genetic inheritance from environmental e↵ects. This relies on the
fact that the genotype of the o↵spring is determined by both the genotype of the par-
ents and the segregation events that occurred during meiosis. One can assume that the
segregation events in the parents of i that produced the genome of i are independent of
the environmental e↵ects on the phenotype of i. We can write g in a way that reflects
segregation:

gi = Ipp(i)g
p
p(i) + Ipm(i)g

m
p(i) + Imm(i)g

m
m(i) + Imp(i)g

p
m(i), (3)

where gpp(i) is the paternally inherited binary genotype of the father of i, gmp(i) is the mater-
nally inherited binary genotype of the father of i, and gmm(i) and gpm(i) are the equivalents
for the mother; Ipp(i) is the indicator variable for whether the paternal variant of i was
passed down the patrilineage, and Imp(i) is the indicator for whether the maternal variant
of i was passed down from i’s maternal grandfather. Note that Imp(i) = 1� Imm(i), since
the maternal variant of i was either inherited from i’s maternal grandfather or grand-
mother. One can assume that Ipp(i) and Imp(i) are Bernoulli(0.5) variables, independent
of e. Therefore,

gi ? ei | gpp(i), g
m
p(i), g

m
m(i), g

p
m(i). (4)

In other words, the genotype of the child is conditionally independent of environmental
e↵ects on the child given the genotypes of the parents of the child.

Any dependence between the inherited genetic variants and environmental e↵ects flows
through the parental genotypes. Furthermore, because the expectation of the o↵spring
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genotype conditional on the parental genotypes is a linear function of the parental geno-
types,

E[gi|gpp(i), g
m
p(i), g

m
m(i), g

p
m(i)] =

1

2
(gpp(i) + gmp(i) + gmm(i) + gpm(i)), (5)

any linear dependence between g and and e flows through gpari = gpp(i)+gmp(i)+gmm(i)+gpm(i).
This notion is proven formally by the Conditional Independence Lemma (Appendix B),
which implies that,

Yi = µ+ �gi + ⌘gpari + ✏i, for some ✏i such that Cov(✏i, gi) = Cov(✏i, g
par
i ) = 0, (6)

where ⌘ is the regression coe�cient of ei on gpari , and ✏i is the residual environmental
e↵ect on the phenotype of i after regression of ei on gpari . We further assume, without
loss of generality, that E[✏i] = 0, as any non-zero mean can be incorporated into µ
by reparameterisation. Note we have not made any assumption about the nature of
the relationship between gpari and ei, which could be non-linear. This leads to a simple
decomposition of the phenotypic variance:

Var(Yi) = �2Var(gi) + ⌘2Var(gpari ) + 2�⌘Cov(gi, g
par
i ) + Var(✏i), (7)

where �2Var(gi) is the variance explained by the direct e↵ect of genetic inheritance at
the locus, ⌘2Var(gpari ) is the variance of the part of the environmental component of the
phenotype that is correlated with parental genotype, 2�⌘Cov(gi, g

par
i ) is the covariance

between the direct genetic e↵ect and environmental e↵ects, and Var(✏i) is variance of
the component of the phenotype that is uncorrelated with both parent and o↵spring
genotype. We retain the subscript i to allow for heteroskedasticity between individuals,
arising from di↵erent levels of inbreeding or di↵erent environmental variances. A variance
decomposition for the whole population could then be found by applying the law of total
variance:

Var(Y ) = Ei[Var(Yi)] + Vari(E[Yi]). (8)

The decomposition is true for traits that satisfy the assumptions of additivity of direct
genetic e↵ects and no interaction between direct genetic e↵ects and environmental e↵ects.
We note that ve⇠g will capture variance explained by (additive) parental genetic nurturing
e↵ects, among other sources of environmental variation.

Alternative variance decompositions are possible. We can write

Yi = �

✓
gi �

1

2
gpari

◆
+

✓
⌘ +

�

2

◆
gpari + ✏i. (9)

The first component is the variation in o↵spring genotype unexplained by parental geno-
type, so Cov(gpari ,

�
gi � 1

2g
par
i

�
) = 0,

) Var(Yi) = �2Var

✓
gi �

1

2
gpari

◆
+

✓
⌘ +

�

2

◆2

Var(gpari ) + Var(✏). (10)
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This variance decomposition only has two genetic components, so may be preferred for
some applications. However, �2Var

�
gi � 1

2g
par
i

�
< vg, with the di↵erence depending on the

level of inbreeding in the parents and relatedness between the parents in the population,
so the interpretation of the variance components from fitting this decomposition may not
be clear.

Although we cannot in general know ✏, we can obtain a consistent estimator of � by
regressing Yi jointly onto gi and gpari . This follows from the fact that Cov(gi, ✏i) = 0 and
E[✏i] = 0 by standard regression theory.

The sum of the parental genotypes and the o↵spring genotype are linearly dependent
in expectation, so the information to fit this regression model comes entirely from the
deviation of the o↵spring genotype around its expectation. We will show that fitting
the covariance model implied by this regression model gives an estimator of vg that re-
moves environmental bias, with the information coming from the deviation in relatedness
between o↵spring around the expectation given by the relatedness of the parents.

1.2 Covariance between relatives

We now derive the covariance between pairs of individuals conditional on the identity-
by-descent (IBD) sharing states between their inherited chromosomes and their parents’
chromosomes. (Note we use the initials IBD to refer to both ‘identity-by-descent’ and
‘identical-by-descent’ depending on context.) We consider the causal variant to be located
randomly with respect to identity-by-descent sharing. For a genome comprised of L
locations, and for k, l = m,p, where ‘m’ indicates the maternal variant, and ‘p’ indicates
the paternal variant:

IBDkl
ij = P(the k-variant of i is IBD with the l-variant of j) (11)

=
1

L

LX

s=1

IBDkl
ij (s), (12)

where

IBDkl
ij (s) =

⇢
1 if k-chromosome of i is IBD with l-chromosome of j at position s;
0 otherwise.

We now derive the covariance under population genetic assumptions of a random-
mating population with finite ancestral size33. The covariance between two individuals
becomes complicated when the residual environment of one individual is correlated with
the genetic variant of the other. For the covariance between a pair i and j, we first assume
that ✏i is uncorrelated with gj and gparj and that ✏j is uncorrelated with gi and gpari . If
we assume this is true for all pairs, then, if the allele frequency of g is f , the covariance
matrix for a vector of phenotype observations, Y, is

Cov(Y) = �22f(1� f)R + ⌘24f(1� f)Rpar + 2�⌘2f(1� f)Ro,par + Cov(✏), (13)
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where R is the additive relatedness matrix in a finite population, with i, jth element equal
to33

Rij =
1

2

X

k,l=m,p

IBDkl
ij �K0

1�K0
, (14)

where K0 is the mean kinship over all pairs in the population; Rpar is the additive re-
latedness matrix between the parents of individuals in sample, with i, jth element equal
to

[Rpar]ij =
Kp(i)p(j) +Kp(i)m(j) +Km(i)p(j) +Km(i)m(j) � 4K0

1�K0
, (15)

where Kp(i)m(j) is the kinship between the father of i and the mother of j; and Ro,par is
the additive relatedness between parents and o↵spring of individuals in the sample, with
i, jth element equal to

[Ro,par]ij =
Kip(j) +Kim(j) +Kp(i)j +Km(i)j � 4K0

1�K0
, (16)

where Kim(j) is the kinship between i and the mother of j, etc. Note that both Rpar

and Ro,par have diagonal elements equal to one in an infinite, outbred, random-mating
population, where K0 is zero33.

The covariance matrix can be written in terms of the variance components defined in
(7) in an infinite, outbred, random-mating population:

Cov(Y) =vgR + ve⇠gRpar + cg,eRo,par + Cov(✏), (17)

where vg = �22f(1�f) is the variance explained by the direct e↵ect of genetic inheritance
at the locus, ve⇠g = ⌘24f(1�f) is the variance of the part of the environmental component
of the phenotype that is correlated with parental genotype, cg,e = 2�⌘2f(1 � f) is the
covariance between the direct genetic e↵ect and environmental e↵ects

1.3 Residual genetic correlations

We now relax the assumption that the residual environment of i is uncorrelated with gj
and vice-versa. We can write ✏i in terms of its regression on gj and gparj and the residual
of this regression:

✏i = ajigj + bjig
par
j + ✏ji, (18)

where Cov(✏ji, gj) = Cov(✏ji, g
par
j ) = 0. The equivalent can be done for ✏j:

✏j = aijgi + bijg
par
i + ✏ij, (19)

where Cov(✏ij, gi) = Cov(✏ij, g
par
i ) = 0. We note that if aij 6= 0 and aji 6= 0, this implies

that the genotype of i a↵ects the phenotype of j and vice-versa, which we term a ‘reciprocal
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genetic e↵ect’. If this is the case, it creates problems for estimating heritability for all
methods based on genetic relatedness (Appendix A).

The covariance between i and j is therefore

Cov(Yi, Yj) = vgRij + ve⇠g[Rpar]ij + cg,e[Ro,par]ij + �[Cov(gj, ✏i) + Cov(gi, ✏j)]+ (20)

⌘[Cov(gparj , ✏i) + Cov(gpari , ✏j)] + Cov(✏i, ✏j).

We have that
Cov(✏i, gj) = 2f(1� f)(ajiRjj + bji[Ro,par]jj), (21)

Cov(✏i, g
par
j ) = 2f(1� f)(aij[Ro,par]jj + 2bij[Rpar]jj), (22)

with equivalent results for ✏j. This gives

Cov(Yi, Yj) = vgRij + ve⇠g[Rpar]ij + cg,e[Ro,par]ij + Cov(✏i, ✏j)+ (23)

�2f(1� f)[ajiRjj + aijRii] + ⌘4f(1� f)[bji[Rpar]jj + bij[Rpar]ii]+

2f(1� f)[(�bji + ⌘aji)[Ro,par]jj + (�bij + ⌘aij)[Ro,par]ii].

The covariance of the residual environmental e↵ects is

Cov(✏i, ✏j) =2f(1� f)(ajiaijRij + bijbji[Rpar]ij + (bjiaij + bijaji)[Ro,par]ij) + cij (24)

where cij is a sum of terms involving the covariances between gi, g
par
i and ✏ji, and between

gj, g
par
j and ✏ij. Since Cov(✏ij, gi) = 0 and Cov(✏ji, gj) = 0, cij cannot contain any terms

directly due to the covariance between gi and gj. We therefore have that the coe�cient
of Rij in Cov(Yi, Yj) is vg + 2f(1� f)ajiaij.

1.4 Consistent estimation of heritability

The covariances due to residual environmental e↵ects are, in general, unknown. RDR fits
a simplified model of the phenotypic covariance matrix:

Cov(Y) =vgR + ve⇠gRpar + cg,eRo,par + �2I. (25)

We prove that fitting the RDR covariance model by least-squares regression of the o↵-
diagonal elements of the sample phenotypic covariance matrix jointly onto the o↵-diagonal
elements of R, Rpar, and Ro,par gives a consistent estimator for vg. To do this, however,
we have to show that fitting Rpar and R jointly removes any confounding between the
elements of R and residual environmental e↵ect sharing. This is necessary because, even
though ✏ and g are uncorrelated, their associated covariance matrices could be related.
This may be the case when environmental e↵ects uncorrelated with parental genetics are
more similar for more related people, either due to broad-scale environmental e↵ects or
to family level environmental e↵ects.
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We showed that when indirect genetic e↵ects are present, specifically reciprocal genetic
e↵ects, this can generate covariance between pairs of individuals that is indistinguishable
from the covariance due to the e↵ects of directly inherited genetic variants (Appendix A
and Subsection 1.3). This may seem an insurmountable problem for any method of
estimating heritability using the change in phenotypic covariance with genetic relatedness,
such as twin studies or Sib-Regression5. However, we prove that our estimator will still
converge to the true heritability provided that the fraction of pairs exhibiting indirect
genetic e↵ects on each other tends to zero with sample size.

There is a further complication when pairs in the sample are related by direct descent.
This is because the segregation events between pairs that are related by direct descent
are not independent. For the purposes of this analysis, we consider monozygotic twins as
related by direct descent.

We first prove consistency when there are no indirect genetic e↵ects between pairs in
the sample and no pairs in the sample are related by direct descent. To do this, we prove
the following lemma for pairs of individuals that do not exhibit indirect genetic e↵ects on
each other’s residual environments and are not related by direct descent.

1.4.1 Relatedness Disequilibrium Lemma

Lemma 1. Let
IBDpar

ij = {IBDk0l0

k(i)l(j)(s)}k,l,k0,l0=m,p; s=1,...,L, (26)

and let I(i) = {Ikm(i, s)}k=m,p;s=1,...,L, then, for i and j not related by direct descent,

Rij, [Ro,par]ij?✏i, ✏j|IBDpar
ij , if ✏j?I(i) and ✏i?I(j). (27)

Remark. This says that the additive relatedness between a pair i, j, Rij, is independent
of the residual environmental e↵ects on i and j given the IBD sharing states between the
parents of i and the parents of j, if the residual environment of i is independent of the
segregation events leading to j’s genotype and vice-versa. This is true because the IBD
sharing between i and j is determined by the IBD sharing between the parents of i and
the parents of j and the segregation events in those parents (Supplementary Figure 1).

Proof. We now express IBDkl
ij (s) as a function of the IBD sharing between the parents

of i and the parents of j at position s, and the segregation events in those parents. For
k, k0 = m,p, we define the segregation variables in the parents of i:

Ikk0(i, s) =

8
<

:

1 if the genetic variant at position s on the k-chromosome of i
was inherited from the k0 parent of k;

0 otherwise.
(28)

For example, Imp(i, 2) is 1 if the maternal variant of i at position 2 was inherited from
i’s maternal grandfather. Note that Imp(i, s) = 1 � Imm(i, s), as the maternal variant of
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i was either inherited from the maternal grandmother or the maternal grandfather. Let
m(i) be the mother of i and p(j) be the father of j, etc., then

IBDkl
ij (s) =

X

k0,l0=m,p

Ikk0(i, s)Ill0(j, s)IBD
k0l0

k(i)l(j)(s). (29)

) IBDkl
ij =

X

k0,l0=m,p

"
1

L

LX

s=1

Ikk0(i, s)Ill0(j, s)IBD
k0l0

k(i)l(j)(s)

#
. (30)

If there is no recombination and only one chromosome, then Ikk0(i, s) = Ikk0(i) and
Ill0(j, s) = Ill0(j) for s = 1, . . . , L, and

IBDkl
ij =

X

k0,l0=m,p

"
Ikk0(i)Ill0(j)

1

L

LX

s=1

IBDk0l0

k(i)l(j)(s)

#
=

X

k0,l0=m,p

Ikk0(i)Ill0(j)IBD
k0l0

k(i)l(j) (31)

) IBDkl
ij?✏i|{IBDk0l0

k(i)l(j)}k0,l0=m,p if ✏i?Ilm(j), Ikm(i). (32)

For example, for k = m and l = p, this means that the IBD sharing between the maternal
chromosome of individual i and paternal chromosome of j is conditionally independent
of ✏i, given the IBD sharing states between the mother of i and the father of j, if ✏i is
independent of the relevant segregation events in j’s father and i’s mother. From the
assumptions of the model, the environment of i, and therefore ✏i, is independent of Ikm(i).
From the assumptions of the Lemma, ✏i?Ilm(j), so

IBDkl
ij?✏i|{IBDk0l0

k(i)l(j)}k0,l0=m,p (33)

Also from the assumptions of the Lemma, ✏j?Ikm(i), implying

IBDkl
ij?✏i, ✏j|{IBDk0l0

k(i)l(j)}k0,l0=m,p. (34)

This is true for for k, l = m,p, so

Rij?✏i, ✏j|{IBDk0l0

k(i)l(j)}k,l,k0,l0=m,p. (35)

This says that Rij is conditionally independent of ✏i and ✏j, given the IBD sharing states
between the parents of i and the parents of j.

While we have derived this under the assumption of no-recombination, we can relax
this assumption to get the more general result. Let

IBDpar
ij = {IBDk0l0

k(i)l(j)(s)}k,l,k0,l0=m,p; s=1,...,L, (36)

and let I(i) = {Ikm(i, s)}k=m,p;s=1,...,L,

Rij?✏i, ✏j|IBDpar
ij , if ✏j?I(i) and ✏i?I(j). (37)

9



A similar result applies to Ro,par. The elements of Ro,par are constructed from the
kinship coe�cients between i and the parents of j, and vice-versa, such as

Kip(j) =
1

4

X

k=m,p

X

l0=m,p

IBDkl0

ip(j). (38)

IBDkl0

ip(j) =
1

L

LX

s=1

IBDkl0

ip(j)(s) =
1

L

LX

s=1

X

k0=m,p

Ikk0(i, s)IBD
k0l0

k(i)p(j)(s) (39)

) Kip(j) =
1

4

X

k=m,p

X

k0,l0=m,p

1

L

LX

s=1

Ikk0(i, s)IBD
k0l0

k(i)p(j)(s). (40)

We therefore have that Kip(j)?✏i|IBDpar
ij , and, if ✏j?I(i), then Kip(j)?✏i, ✏j|IBDpar

ij . This
also applies to Kim(j). Similarly, for l = m,p, we have Kl(i)j?✏j|IBDpar

ij , and, if ✏i?I(j), then
Kl(i)j?✏i, ✏j|IBDpar

ij . These results imply that [Ro,par]ij?✏i, ✏j|IBDpar
ij , given that ✏i?I(j)

and ✏j?I(i).

1.4.2 Proof of consistency

Let L(A) be the column vector of lower-triangular elements of a matrix A, excluding the
diagonal, in lower-triangular order. If y is the column vector of phenotype observations
and ȳ is the sample mean phenotype, then the sample covariance matrix is S = (y �
ȳ)(y � ȳ)T . We regress

L(S) ⇠ X = [L(R) L(Rpar) L(Ro,par)]. (41)

Let ✓ = [vg, ve⇠g, cg,e]T , then our least-squares estimate of ✓ is

✓̂ = [v̂g, v̂e⇠g, ĉg,e]
T = (XTX)�1XTL(S). (42)

We are regressing over all pairs of individuals in a sample. In this context, an un-
conditional expectation, for example E[(gi � ḡ)(gj � ḡ)], is the expectation over all pairs
i 6= j, where z̄ implies the sample mean of z. If, however, we condition on genetic relat-
edness, this is then the expectation over all pairs with genetic relatedness equal to Rij,
E[(gi � ḡ)(gj � ḡ)|Rij] = 2f(1� f)Rij.

The consistency of the estimator of vg derives from the fact that the correlation over
all pairs of the genetic relatedness, Rij, with covariation of residual environmental e↵ects,
✏i✏j, is removed by regressing jointly with the relatedness between the parents of i and j,
[Rpar]ij. However, this is not true for pairs of individuals who have indirect genetic e↵ects
upon each other and for pairs related by direct descent (Appendix A and Lemma 1). We
therefore assume that no pairs are related by direct descent. We further assume that the
genotype of i does not a↵ect the residual environment of j and vice-versa for all pairs

10



i, j, and then we examine the conditions for consistency of the estimator of vg when this
assumption is not true.

We have shown that the phenotypes of individuals i and j can be written as (6)

yi = �gi + ⌘gpari + ✏i, (43)

yj = �gj + ⌘gparj + ✏j,

If we define Gi = �gi + ⌘gpari , then

Sij = (yi � ȳ)(yj � ȳ) =(Gi � Ḡ)(Gj � Ḡ) + (Gi � Ḡ)(✏j � ✏̄)+ (44)

(Gj � Ḡ)(✏i � ✏̄) + (✏i � ✏̄)(✏j � ✏̄).

We can write this in terms of its expectation given X and the sampling error that is
uncorrelated with X. The covariance of the genetic components given X is

E[(Gi � Ḡ)(Gj � Ḡ)|X] = vgRij + ve⇠g[Rpar]ij + cg,e[Ro,par]ij. (45)

For the components of the sample covariance involving the residual environments of i
and j, we have that (18 and 19)

✏i = ajigj + bjig
par
j + ✏ji, and ✏j = aijgi + bijg

par
i + ✏ij, (46)

for Cov(✏ij, gi) = Cov(✏ij, g
par
i ) = Cov(✏ji, gj) = Cov(✏ji, g

par
j ) = 0.

We first prove consistency without indirect genetic e↵ects between pairs in the sample.

Theorem 2. If

1. for all pairs i, j, i and j are not related by direct descent;

2. for all pairs i, j, the residual environment of i is independent of I(j) and the residual
environment of j is independent of I(i) (Definition E.9);

3. the sample is drawn from a random-mating population;

4. genetic variants with direct causal e↵ects are located at random with respect to
identity-by-descent sharing;

5. direct e↵ects of inherited genetic variants are additive, including no parent-of-origin
e↵ects;

6. there is no gene-environment interaction;

then,
lim
n!1

v̂g = vg. (47)

11



Proof. If ✏i?I(j) and ✏j?I(i), then aji = aij = 0 (19 and 18). We therefore have that (23)

E[(Gi � Ḡ)(✏j � ✏̄) + (Gj � Ḡ)(✏i � ✏̄)|X] = ⌘4f(1� f)[bji[Rpar]jj + bij[Rpar]ii]+ (48)

�2f(1� f)[bji[Ro,par]jj + bij[Ro,par]ii].

In addition to aji = aij = 0, ✏i?I(j) and ✏j?I(i) implies that bij and bji are independent
of I(i) and I(j). This means that, although the coe�cients bij and bji may rely upon
the relatedness between the parents of i and the parents of j, [Rpar]ij, they cannot rely
directly upon the relatedness between i and j, Rij. This implies that Rij?bij, bji|IBDpar

ij .
Furthermore, this allows us to apply the Conditional Independence Lemma (Appendix B)
to elements of (48).

We can therefore express Sij as:

Sij =vgRij + ve⇠g[Rpar]ij + cg,e[Ro,par]ij + ⌘4f(1� f)[bji[Rpar]jj + bij[Rpar]ii]+ (49)

�2f(1� f)[bji[Ro,par]jj + bij[Ro,par]ii] + (✏i � ✏̄)(✏j � ✏̄) + ⇠Gij,

where ⇠Gij represents sampling error uncorrelated with X, and E[⇠Gij|X] = 0.
From the Relatedness Disequilibrium Lemma (Lemma 1), we know that, when ✏i?I(j)

and ✏j?I(i) and i and j are not related by direct descent,

Rij, [Ro,par]ij?✏i, ✏j|IBDpar
ij , (50)

and from Lemma 4 that, for i, j not related by direct descent,

E[Rij|IBDpar
ij ] =

1

2
[Rpar]ij, and E[[Ro,par]ij|IBDpar

ij ] = [Rpar]ij, (51)

where IBDpar
ij (Definition E.7) represents the genome-wide IBD sharing states between

the parents of i and the parents of j. Therefore, by the Conditional Independence Lemma
(Lemma 1), since [Rpar]ij is a linear combination of the elements of IBDpar

ij , for some ⇠✏ij
such that Cov(Rij, ⇠✏ij) = Cov([Ro,par]ij, ⇠✏ij) = Cov([Rpar]ij, ⇠✏ij) = 0,

(✏i � ✏̄)(✏j � ✏̄) = ⇣par[Rpar]ij + ⇠✏ij, (52)

where ⇣par is the regression coe�cient from regression of (✏i � ✏̄)(✏j � ✏̄) on [Rpar]ij. Note
we have not made an assumption that the relationship between [Rpar]ij and (✏i� ✏̄)(✏j� ✏̄)
is linear to derive this.

We now analyse the dependence between Rij and the diagonal elements of Rpar and
Ro,par. For

[Rpar]ii =
Kp(i)p(i) +Kp(i)m(i) +Km(i)p(i) +Km(i)m(i) � 4K0

1�K0
, (53)

we have that [Rpar]ii?I(i), I(j). Therefore,

Rij, [Ro,par]ij?[Rpar]ii|IBDpar
ij . (54)
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The same applies for [Rpar]jj, so

Rij, [Ro,par]ij?[Rpar]jj, [Rpar]ii|IBDpar
ij . (55)

By the Conditional Independence Lemma (Appendix B), since E[Rij|IBDpar
ij ] = [Rpar]ij/2,

for some constant b and some ⇠bij such that

Cov(⇠bij,Rij) = Cov(⇠bij, [Ro,par]ij) = Cov(⇠bij, [Rpar]ij) = 0, (56)

⌘4f(1� f)[bji[Rpar]jj + bij[Rpar]ii] = b[Rpar]ij + ⇠bij. (57)

For

[Ro,par]ii =
2(Kip(i) +Kim(i))� 4K0

1�K0
, (58)

where (Lemma 5)

Kip(i) +Kim(i) =
1

4

X

k,l=m,p

X

k0,l0=m,p

1

L

LX

s=1

Ikk0(i, s)IBD
k0l0

k(i)l(i)(s), (59)

we have that Rij?[Ro,par]ii|IBDpar
ij , I(i). From Lemma 5, we have that

E[Rij|IBDpar
ij , I(i)] =

Kip(j) +Kim(j) � 2K0

1�K0
. (60)

Therefore, by the Conditional Independence Lemma (Appendix B), for some constant b0

and some ⇠b00ij such that Cov(⇠b00ij,Rij) = 0,

�2f(1� f)bij[Ro,par]ii = b0
✓
Kip(j) +Kim(j) � 2K0

1�K0

◆
+ ⇠b00ij. (61)

However, we may have that Cov(⇠b00ij, [Rpar]ij) 6= 0. Although we do not prove it, we be-
lieve it to be an obvious extension of the Conditional Independence Lemma (Appendix B)
that, for some constants b0 and b0par and some ⇠b00ij such that

Cov(⇠b00ij,Rij) = Cov(⇠b00ij, [Rpar]ij) = 0, (62)

�2f(1� f)bij[Ro,par]ii = b0
✓
Kip(j) +Kim(j) � 2K0

1�K0

◆
+

b0par
2

[Rpar]ij + ⇠b00ij, (63)

The coe�cients b0 and b0par represent the joint regression:

�2f(1� f)bij[Ro,par]ii ⇠
✓

Kip(j) +Kim(j) � 2K0

1�K0

◆
, [Rpar]ij

�
(64)
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over all pairs i and j. By symmetry, we have

�2f(1� f)bji[Ro,par]jj = b0
✓
Kjp(i) +Kjm(i) � 2K0

1�K0

◆
+

b0par
2

[Rpar]ij + ⇠b01ij, (65)

for some ⇠b01ij such that Cov(⇠b01ij, Rij) = Cov(⇠b01ij, [Rpar]ij) = 0. Therefore,

�2f(1� f)[bji[Ro,par]jj + bij[Ro,par]ii] = b0[Ro,par]ij + b0par[Rpar]ij + ⇠b0ij, (66)

where Cov(⇠b0ij, Rij) = Cov(⇠b0ij, [Ro,par]ij) = Cov(⇠b0ij, [Rpar]ij) = 0.
We can therefore express Sij as:

Sij =vgRij + (ve⇠g + b+ b0par + ⇣par)[Rpar]ij + (cg,e + b0)[Ro,par]ij+ (67)

⇠bij + ⇠b0ij + ⇠✏ij + ⇠Gij.

We can therefore express the vector of lower triangular elements of S as

L(S) = X

2

4
vg

ve⇠g + b+ b0par + ⇣par
cg,e + b0

3

5+ ⇠b + ⇠b0 + ⇠✏ + ⇠G, (68)

where ⇠b, ⇠b0 , ⇠✏, and ⇠G are the vectors, in lower-triangular order for all pairs i, j, of ⇠bij,
⇠b0ij, ⇠✏ij, and ⇠Gij respectively. Therefore, the least squares estimator of ✓ is

✓̂ =

2

4
vg

ve⇠g + b+ b0par + ⇣par
cg,e + b0

3

5+ (XTX)�1[XT ⇠b +XT ⇠b0 +XT ⇠✏ +XT ⇠G]. (69)

If we take the limit of this as the sample size tends to infinity,

lim
n!1

✓̂ =

2

4
vg

ve⇠g + b+ b0par + ⇣par
cg,e + b0

3

5+Cov(X)�1 lim
n!1

2

n(n� 1)
[XT ⇠b+XT ⇠b0+XT ⇠✏+XT ⇠G]

(70)
In general, limn!1(2/(n(n � 1)))[XT ⇠] = [E[Rij⇠ij],E[[Rpar]ij⇠ij],E[[Ro,par]ij⇠ij]]T . Since
E[Rij] = E[[Rpar]ij] = E[[Ro,par]ij] = 0,

lim
n!1

2

n(n� 1)
[XT ⇠] = [Cov(Rij, ⇠ij),Cov([Rpar]ij, ⇠ij),Cov([Ro,par]ij, ⇠ij)]

T . (71)

Since ⇠bij, ⇠b0ij, and ⇠✏ij are not correlated with Rij, [Rpar]ij or [Ro,par]ij (see above), we
have

lim
n!1

2

n(n� 1)
[XT ⇠b +XT ⇠b0 +XT ⇠✏] = 0. (72)
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Furthermore, we have that E[⇠Gij|X] = 0. Therefore, E[Rij⇠Gij] = E[E[Rij⇠Gij|X]] =
E[RijE[⇠Gij|X]] = 0. Similarly, E[[Rpar]ij⇠Gij] = E[[Ro,par]ij⇠Gij] = 0. Therefore,

lim
n!1

(2/(n(n� 1)))XT ⇠G = 0. (73)

We therefore have

lim
n!1

✓̂ =

2

4
vg

ve⇠g + b+ b0par + ⇣par
cg,e + b0

3

5 . (74)

Remark. We now comment on the assumptions of Theorem 2:

1. for all pairs i, j, i and j are not related by direct descent. This is necessary because
when i and j are related by direct descent, the segregation events in i and j’s parents
become dependent upon each other. If parent-o↵spring (or grandparent-grandchild,
etc.) pairs are included in the sample, then this could introduce bias, with the
bias becoming larger in proportion to the the proportion of pairs related by direct
descent.

2. For all pairs where i 6= j, the residual environment of i is independent of I(j) and
the residual environment of j is independent of I(i). This means that, although
the residual environment of i can be correlated with the genotype of j, it cannot be
directly a↵ected by it, and vice-versa. It also means that the correlation between the
genotype of i and the residual environment of j, and vice-versa, cannot rely directly
upon the genetic relatedness of i and j, although it can rely upon the relatedness
between the parents of i and the parents of j, and through that be correlated with
the relatedness between i and j.

3. The sample is drawn from a random-mating population. This is a standard assump-
tion made to derive the relationship between kinship and genetic covariance, which
is not sensitive to small deviations from random mating.

4. genetic variants with direct causal e↵ects are located at random with respect to
identity-by-descent sharing. This assumption may be violated for ascertained sam-
ples and when there is assortative mating with respect to the phenotype.

5. direct e↵ects of inherited genetic variants are additive, including no parent-of-origin
e↵ects. Non-additive direct genetic e↵ects could be incorporated but they may be
correlated with the residual environment as only the linear correlation with genetic
variation has been regressed out of the environment. Corresponding non-additive
associations between the parental genotypes and the environment would have to
be considered to guarantee the residual environment is uncorrelated with the non-
additive genetic e↵ects.
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6. No gene-environment interaction. Interaction between genetic variants and envi-
ronment can complicate heritability estimation by making the e↵ects of genetic and
environmental variation di�cult to separate.

Although we have derived the theory under these assumptions, the consistency of the
estimator of vg may hold in a wider set of scenarios, at least approximately. For example,
when there is population structure, the relationship between IBD sharing and genetic
covariance does not hold exactly. However, the conditional independence of o↵spring
genotype and environment given parental genotype still holds, and therefore so does the
variance decomposition. The Relatedness Disequilibrium Lemma also still holds. There-
fore, any lack of consistency of the estimator when there is population structure does
not result from environmental confounding, but from improper calculation of the genetic
covariance from IBD sharing, which is likely to be a small deviation except in cases of
extremely strong population structure.

While we have shown the consistency of a least-squares regression based estimator
of vg, in practice it is often more statistically e�cient to assume the phenotype Y fol-
lows a multivariate normal distribution and to fit the variance components by restricted
maximum likelihood. The restricted maximum likelihood estimator for vg and the least-
squares estimator of vg should converge to the same value, however, if Y has multivariate
normal distribution, and so have the same asymptotic properties in terms of bias due to
environmental e↵ects.

We now prove consistency with indirect genetic e↵ects when the fraction of pairs with
indirect genetic e↵ects on each other tends to zero.

Corollary 2.1. Let ⇢n1 be the number of pairs i, j, out of a sample of size n, for which
(✏i?I(j) and ✏j?I(i)) is not true. Then limn!1 v̂g = vg if assumptions 1 and 3-6 of
Theorem 2 hold and ⇢n1 2 o(n2).

Proof. When the genotype of i a↵ects the residual environment of j, or vice-versa, the
Relatedness Disequilibrium Lemma (Lemma 1) no-longer holds. We partition X and L(S)
into the ⇢n0 pairs i, j such that ✏i?I(j) and ✏j?I(i), which are represented by X0 and S0,
and the ⇢n1 remaining pairs, which are represented by X1 and S1: XT = [XT

0 XT
1 ], and

L(S)T = [ST
0 ST

1 ]. Applying Theorem 2 within pairs i, j such that ✏i?I(j) and ✏j?I(i), we
have that

S0 = X0✓0 + ⇠0, ✓0 =

2

4
vg

ve⇠g + b+ b0par + ⇣par
cg,e + b0

3

5 , (75)

for some ⇠0 such that limn!1 ⇢�1
n0X

T
0 ⇠0 = 0. For the remaining ⇢n1 pairs, we have

S1 = X1(✓0 + b1) + ⇠1, (76)
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for some ⇠1 such that limn!1 ⇢�1
n1X

T
1 ⇠1 = 0. This allows for some additional bias in

the estimation of ✓ arising from the breaking of the Relatedness Disequilibrium Lemma
(Lemma 1). Our overall estimate of ✓ therefore becomes

✓̂ = ✓0 + (XTX)�1XT
1 X1b1 + (XTX)�1[XT

0 ⇠0 +XT
1 ⇠1]. (77)

Let Sn = 2(XTX)/(n(n� 1)) and let Sn1 = XT
1 X1/⇢n1, then

✓̂ = ✓0 +
2⇢n1

n(n� 1)
S�1
n Sn1b1 + (XTX)�1[XT

0 ⇠0 +XT
1 ⇠1]. (78)

There is therefore a bias term proportional to 2⇢n1/(n(n � 1)), the fraction of pairs i, j
for which (✏i?I(j) and ✏j?I(i)) is not true for a sample of size n. Taking the limit,

lim
n!1

✓̂ = ✓0 +

✓
lim
n!1

2⇢n1
n(n� 1)

◆
Cov(X)�1Cov(X1)b1. (79)

We therefore have that

lim
n!1

v̂g = vg if lim
n!1

2⇢n1
n(n� 1)

= 0. (80)

Remark. In this, we have assumed that

lim
n!1

S�1
n Sn1 = Cov(X)�1Cov(X1) < 1. (81)

It is, however possible, that S�1
n Sn1 ! 1, and then the bias may not disappear. This

could be the case if there is only relatedness disequilibrium (variation in Rij that is
independent of [Rpar]ij and [Ro,par]ij) for the ⇢n1 pairs with indirect e↵ects on each other.
Furthermore, if the relatedness disequilibrium is large for pairs with indirect genetic e↵ects
on each other, which would be the case if those pairs are siblings, then the magnitude of
the bias will reflect this.

A case where the estimator could not be consistent would be when the genotype of each
individual a↵ects the residual environment of every other individual in the population.
This may apply to certain traits that depend upon the entire network of individuals in a
population.
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2 GREML-SNP and RDR-SNP

In this section, we first construct the RDR-SNP covariance model, then we analyse the
standard GREML-SNP method in the more general RDR-SNP covariance model.

In this section, we consider the causal SNPs as known and the genotypes at the causal
SNPs as observed. This is to highlight the environmental bias properties of RDR-SNP
and GREML-SNP. In reality, the causal SNPs are unknown and possibly unobserved.
Using SNPs other than the causal SNPs to estimate relatedness matrices can introduce
bias to heritability estimates4.

2.1 RDR-SNP

We model a vector of phenotype observations for n probands for a trait with l bi-allelic
SNPs with direct e↵ects. Let X be the [n⇥ l] matrix of standardised proband genotypes
at the l causal SNPs, with

[X]ij =
gij � 2fjp
2fj(1� fj)

, (82)

where gij 2 {0, 1, 2} is the count of one of the alleles of SNP j in proband i, and fj is the
frequency of the allele. In general, E[[X]ij] = 0. In an infinite, outbred, random-mating
population, Var([X]ij) = 1.

Let Xp be the [n⇥ l] matrix of standardised genotypes of the probands’ fathers, with

[Xp]ij =
gp(i)j � 2fjp
2fj(1� fj)

, (83)

where gp(i)j 2 {0, 1, 2} is the count of one of the alleles of SNP j in the father of proband
i, and fj is the frequency of the allele. In general, E[[Xp]ij] = 0. In an infinite, outbred,
random-mating population, Var([Xp]ij) = 1.

We define Xm to be the equivalent matrix of standardised genotypes of the probands’
mothers. We then define the parental genotype matrix as Xpar = Xp + Xm. In general,
E[[Xpar]ij] = 0. In an infinite, outbred, random-mating population, Var([Xpar]ij) = 2.

A vector of phenotype observations, Y, can be written as the sum of a direct, genetic
component and an environmental component:

Y = X� + e, (84)

where � is an l-vector of appropriately scaled direct e↵ects of the l causal SNPs, and e is
an n-vector of environmental e↵ects, including noise. Let the genotypes of the parents of
the probands be Gpar. We have that X?e|Gpar and E[X|Gpar] = Xpar/2. Therefore, by
the Conditional Independence Lemma (Appendix B):

Y = µ+X� +Xpar⌘ + ✏, (85)
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for some constant µ, and for some ✏ that is uncorrelated with both proband and parental
genotype and has expectation zero. If no other sources of correlation between proband
genotype and e are present, then ⌘ is the vector of parental genetic nurturing e↵ects of
the l causal loci.

2.1.1 Random E↵ects Model

In RDR, we consider the e↵ects as fixed and the genotypes at the causal loci as unknown.
In GREML-SNP, genotypes at causal loci are treated as observed, and e↵ects are treated
as drawn from a normal distribution. We develop RDR-SNP to be analogous to typical
GREML-SNP analysis. We therefore treat X and Xpar as observed and model � and ⌘ as
drawn from a normal distribution:

Y = X� +Xpar⌘ + ✏;


�
⌘

�
⇠ N

✓
0,

 vg
l Il

cg,e
2l Il

cg,e
2l Il

ve⇠g

2l Il

�◆
. (86)

Here, vg is the variance explained by the direct e↵ects of the l SNPs, ve⇠g is the variance
explained by regression on parental genotypes at the l SNPs, and cg,e is the total covariance
between the direct e↵ects of the l SNPs and the environmental component of the trait.
We make the further assumption that ✏ ⇠ N (0, �2

✏ In) and that ✏ is independent of � and
⌘.

We then have that:

Y|X,Xpar ⇠ N (µ, vgR
snp + ve⇠gR

snp
par + cg,eR

snp
o,par + �2

✏ In), (87)

where

Rsnp =
XXT

l
; Rsnp

par =
XparXT

par

2l
; Rsnp

o,par =
XXT

par +XparXT

2l
. (88)

It is straightforward to prove that E[[Rsnp]ii] = 1, E[[Rsnp
par ]ii] = 1, and E[[Rsnp

o,par]ii] =
1 for i = 1, . . . , n in an infinite, outbred, random-mating population. Given that the
assumptions of the random e↵ects model are satisfied, the variance parameters vg, ve⇠g,
and cg,e can be interpreted in the same way as in the RDR variance decomposition (1.1).

2.1.2 SNP relatedness disequilibrium

The matrices Rsnp, Rsnp
par , and Rsnp

o,par are the SNP equivalents of the matrices R, Rpar,
and Ro,par, calculated from genome-wide IBD sharing. It is natural to ask whether the
relationships between Rsnp, Rsnp

par , and Rsnp
o,par mirror the relationships between R, Rpar, and

Ro,par.
It is straightforward to see that, conditional on parental genotypes, any variation in

Rsnp must be due to random Mendelian segregations in the parents of the probands. It
is also fairly straightforward to prove that, for a pair i, j not related by direct descent,
E[[Rsnp]ij|Gpar] = [Rsnp

par ]ij/2. This implies that a version of the Relatedness Disequilibrium
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Lemma (Lemma 1) applies for RDR-SNP, and that RDR-SNP should therefore have
similar environmental bias properties to RDR.

While RDR and RDR-SNP may have similar environmental bias properties, RDR-SNP
makes assumptions about the distribution of e↵ect sizes that RDR does not. However,
RDR-SNP does not make the assumptions about random-mating that RDR does in order
to derive the phenotypic covariance matrix.

2.2 GREML-SNP

GREML-SNP only uses the halves of the parental genomes transmitted to probands. The
parental genotypes can also be written asXpar = X+XNT, whereXNT = Xpar�X contains
the genotypes of the halves of the parental genomes not transmitted to the o↵spring. We
can therefore write the phenotype as

Y = X(� + ⌘) +XNT⌘ + ✏. (89)

The phenotypic covariance matrix is therefore

Cov(Y) = (vg + ve⇠g/2 + cg,e)R
snp + (ve⇠g/2)R

snp
NT + (cg,e + ve⇠g)R

snp
TNT + �2

✏ In, (90)

where

Rsnp
NT =

XNTXT
NT

l
, Rsnp

TNT =
XXT

NT +XNTXT

2l
. (91)

Standard GREML-SNP analysis fits the following model

Y ⇠ N (µ, vgR
snp + �2

✏ In). (92)

In an infinite, outbred, random-mating population, the non-transmitted parts of the
parental genomes are independent from the transmitted parts. Furthermore, for unre-
lated pairs, the elements of Rsnp will be uncorrelated with the elements of Rsnp

NT and Rsnp
TNT.

Therefore, assuming that Cov(✏) = �2
✏ In, GREML-SNP estimates of vg will tend towards

vg + ve⇠g/2 + cg,e in a sample of unrelated individuals from an infinite, outbred, random-
mating population. When the sample includes close relative pairs, further bias could
be introduced. If Cov(✏) 6= �2

✏ In, this could introduce further bias to GREML-SNP es-
timates, especially when due to population stratification. Assortative mating and other
forms of non-random mating could further introduce bias by inducing correlations between
transmitted and non-transmitted parts of the parental genomes.
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3 Variance of least-squares regression estimators

In this section and in Appendix D, we build on previous work expressing the Haseman-
Elston Regression as a quadratic form35 to derive simple formulae for variances and co-
variances of variance component estimates.

3.1 RELT-SNP as a modified Haseman-Elston Regression

The Haseman-Elston Regression is a simple way to estimate vg by regressing elements
of the sample phenotypic covariance matrix, S = (y � ȳ)(y � ȳ)T , onto corresponding
elements of the relatedness matrix. Here, we are interested in calculating the variance of
the RELT-SNP estimator, so the relatedness matrix is Rsnp. However, the results would
apply to any relatedness matrix.

The Haseman-Elston estimator for vg based on Rsnp is

v̂g =

Pn
i=1

Pn
j=i+1 Sij[R

snp]ijPn
i=1

Pn
j=i+1[R

snp]2ij
. (93)

For the following results, it is useful to define the Frobenius norm of a [n⇥m] matrix
A:

||A||F =

vuut
nX

i=1

mX

j=1

[A]2ij. (94)

Let us define the [n⇥ n] matrix R�:

R�
ij =

Rsnp
ijp

||Rsnp||2F �
Pn

i=1[R
snp]2ii

for i 6= j, and R�
ii = 0 8 i. (95)

In other words, R� is Rsnp with the diagonal elements set to zero, and normalised so that
||R�||2F = 1. Then we equivalently have

v̂g = (y � ȳ)TR�(y � ȳ). (96)

This is a quadratic form. We derive a simple formula for the variance of a quadratic form
in normal random variables in Appendix D. Assuming that Y ⇠ N (0,⌃),

Var(v̂g) = 2Tr(R�⌃R�⌃) = 2||R�⌃||2F (97)

For the RELT-SNP estimator, we simply modify Rsnp by setting all o↵-diagonal ele-
ments with entries greater than the threshold to zero, so that they do not contribute to
the estimate of vg.

21



3.2 Variance of heritability estimate

Let us define the sample variance of Y , S2
y = (y � ȳ)T (y � ȳ)/(n � 1). Heritability can

be estimated by

ĥ2 =
(y � ȳ)TR�(y � ȳ)

S2
y

. (98)

We can calculate the covariance between the numerator and denominator by realising
that S2

y is also a quadratic form, and using a formula we derive for the covariance between
two quadratic forms (Appendix D.1):

Cov(v̂g, S
2
y) =

2Tr(R�⌃2)

n� 1
=

2hR�⌃,⌃iF
n� 1

, (99)

where hA,BiF is the Frobenius inner product between two matrices A and B.
To approximate the variance of ĥ2, we also need the variance of S2

y :

Var(S2
y) = 2Tr(⌃2)/(n� 1)2 = 2||⌃||2F/(n� 1)2. (100)

We then approximate the variance of the heritability estimator using a first-order
Taylor expansion:

Var(ĥ2) ⇡
v̂2g

(S2
y)

2

✓
Var(v̂g)

v̂2g
� 2

Cov(v̂g, S2
y)

v̂gS2
y

+
Var(S2

y)

(S2
y)

2

◆
. (101)

3.3 Variance of RDR least-squares estimator

The above procedure for computing the variance of the RELT-SNP estimator can be
applied to compute the variance of the RDR least-squares estimator. The RDR least-
squares estimator regresses elements of the sample phenotypic covariance matrix jointly
onto elements of R, Rpar and Ro,par. The estimator for vg can be expressed as

v̂g = (y � ȳ)TRd(y � ȳ), (102)

where Rd is a linear combination of R, Rpar and Ro,par, with diagonal elements set to zero
and parent-o↵spring pairs and grandparent-grandchild pairs set to zero. This enables
estimation of the standard error of the RDR least-squares estimator based on the above
results.

To calculate Rd, first set diagonal elements and parent-o↵spring and grandparent-
grandchild pairs to zero for R, Rpar and Ro,par. As in Equation 41, let

X = [L(R), L(Rpar), L(Ro,par)], (103)

where L(A) gives the vector of lower-triangular elements of a square matrix A. Further,
let C = (XTX)�1, then

Rd = C[1, 1]R + C[1, 2]Rpar + C[1, 3]Ro,par. (104)
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3.4 Dealing with an unknown phenotypic covariance matrix

In real applications, the phenotypic covariance matrix ⌃ is unknown. We replace ⌃ with
an estimate of ⌃ from the model: ⌃ = vR + �2I. We compute estimates of v, v̂, by a
standard Haseman-Elston regression without excluding any relative pairs, and we compute
estimates of �2, �̂2, by subtracting v̂ from the estimated phenotypic variance. We then
use ⌃̂ = v̂R + �̂2I in place of ⌃ in the formulae derived above.

4 Trait Simulations

4.1 Simulations using Icelandic data

For all traits other than the ‘rare SNPs’ trait, we used imputed genotypes at SNPs from
the Illumina Framework SNP set (Online Methods). We filtered the SNPs so that the
minimum imputation information was 0.9999, removing around half of the SNPs. Out
of the remaining SNPs passing the filter, we randomly sampled 10,000 SNPs to use as
the causal SNPs in our simulations. In the 10,000 selected SNPs, the median imputation
information was 1.0000, the minimum minor allele frequency (MAF) was 0.52%, and the
median MAF was 22.8%. For the ‘rare SNPs’ trait, we randomly sampled SNPs from
all imputed SNPs with MAF between 1% and 0.1% and with imputation information at
least 0.9999 and p-value for Hardy-Weinberg deviation greater than 0.05. We sampled
100 such SNPs from each chromosome, giving 2,200 SNPs in total. For each type of trait,
we simulated 500 independent replicates.

Each trait had a direct, additive genetic component that explained 40% of the pheno-
typic variance, which we describe the simulation of here. Apart from for the ‘rare SNPs’
trait, we standardised genotypes so that each SNPs genotype vector had sample mean
zero and sample variance one. Let G represent the matrix of standardised genotypes at
the 10,000 causal SNPs. We sampled additive e↵ects of SNPs from a normal distribution.
Let � represent the vector of SNP e↵ects. The additive genetic component, A, was then
calculated as G�. The noise component was simulated as ✏ ⇠ N (0, I). The additive
genetic component was scaled to have sample variance 1. The additive phenotype was
then simulated as:

Y =
p
0.4A+

p
0.6✏. (105)

The same process was used for the ‘rare SNPs’ trait, except genotypes were not standard-
ised because the standardisation becomes highly sensitive to fluctuations in estimated
allele frequencies for rare SNPs.

For the ‘epistatic’ trait, we simulated a genetic component due to pairwise interactions
between SNPs. To do this, we sampled 100 SNPs from the 10,000 SNPs given additive
e↵ects. We formed pairwise interaction variables for all pairs of SNPs from the 100 selected
SNPs by multiplying the standardised genotypes of each pair of SNPs together. Let Gepi

be the resulting matrix of SNP-SNP interaction variables. We standardised the columns
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of Gepi so that each column had sample mean zero and sample variance one. We simulated
interaction e↵ects from a normal distribution, �epi ⇠ N (0, I), and we formed the pairwise
interaction genetic component as Aepi = Gepi�epi, and standardised Aepi so that it had
sample mean zero and sample variance one. The epistatic trait was then formed as:

Y =
p
0.4A+

p
0.1Aepi +

p
0.5✏. (106)

For the regional trait, we gave each of the 22 regions of Iceland (called syslas) a di↵erent
normally distributed e↵ect, and we scaled the overall variance explained by variation in
sysla to be 20% of the phenotypic variance. The phenotype was thus simulated as:

Y =
p
0.4A+ sysla +

p
0.5✏, (107)

where ‘sysla’ represents the vector of sysla e↵ects.
For the ‘maternal environment’ trait, we added an environmental e↵ect that was shared

between individuals who shared mothers according to the deCODE genealogy database.
The e↵ect due to each mother was drawn from a normal distribution, and resulting vector
of e↵ects due to maternal environment, M, was scaled to have variance 0.4. The phenotype
was simulated as:

Y =
p
0.4A+M+

p
0.5✏. (108)

Note, if two individuals had the same mother in the deCODE genealogy database, then
their maternal environment variables were the same.

For the ‘genetic nurturing’ trait, we simulated a component reflecting parental genetic
nurturing e↵ects: each genetic variant in the parents was also given an additive e↵ect on
the trait of the proband. The additive genetic component was A = G�, scaled to have
variance 1. Let Gpar be the matrix of standardised parental genotypes, where the parental
genotype is defined as the sum of the mother’s genotype and the father’s genotype. Then
the genetic nurturing component was simulated as Apar = Gpar�, scaled to have sample
variance 1. This implies that the parental genetic nurturing e↵ects di↵er only by a constant
scale factor from the direct e↵ect of the genetic variant in the o↵spring. The phenotype
was then simulated as

Y =
p
0.4A+

p
0.1Apar +

q
0.5�

p
0.08✏, (109)

where the scale factor for the residual variance was calculated so that the total phenotypic
variance, which includes the covariance between and A and Apar, was 1. For this trait,
ve⇠g = 0.1 and cg,e =

p
0.08 ⇡ 0.283.

4.2 Simulations in the UK Biobank

To simulate GREML-SNP inference on a sample of distantly individuals, we identified a
subset of the genotyped individuals in the UK Biobank who also had both of their parents
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genotyped. To identify parent-o↵spring pairs, we used the kinship table provided by UK
Biobank that identifies all pairs with third degree relationship or closer20. As in the UK
Biobank documentation20, we determined parent-o↵spring pairs as those pairs that were
in the kinship table but had IBS0 < 0.0012 and kinship less than 2�

3
2 . Of the remaining

pairs, we checked whether the recorded ages at recruitment were consistent with a parent-
o↵spring relationship. We removed pairs that had a recorded age di↵erence of less than
11, and we determined which of the pair was the parent by whichever was older. We then
filtered based on sample quality control metrics provided by UK Biobank20: removing
those with a putative sex chromosome aneuploidy, excess relatives, and those with out-
lying heterozygosity. To remove the influence of population structure, we restricted the
sample to those identified by UK Biobank as having been born in Britain and having pre-
dominantly British ancestry20. From the remaining parent-o↵spring pairs, we identified
973 individuals with both parents genotyped.

To estimate relatedness in the set of 973 individuals with both parents genotyped,
we used all genotyped SNPs20 with minor allele frequency (MAF) greater than 5% and
missingness less than 1%. We identified 35 pairs with estimated relatedness greater than
0.05. We removed one of each pair at random, leaving 938 individuals. We removed
one further individual after discovering evidence that there may have been a sample
duplication of one of the individuals parents, leading us to spuriously infer both parents
were genotyped. This gave a final sample of 937.

To select causal SNPs for phenotype simulation, for each chromosome we randomly
sampled 1,500 SNPs then removed those with MAF less than 5% or more than 0.5%
missing genotypes. This gave a set of 11,771 SNPs. We mean imputed missing genotypes
for both parents and o↵spring.

We simulated 10,000 independent traits determined by additive genetic e↵ects and
noise. Let l = 11, 771. We standardised o↵spring genotypes so that the genotypes at
each SNP had mean zero and variance 1. Let G be the matrix of standardised o↵spring
genotypes. For each trait, we simulated a normally distributed vector of e↵ects for the
l SNPs: � ⇠ N (0, 0.2l�1I). The additive genetic component of the trait, A, was then
calculated as A = G�. The noise component was simulated as ✏ ⇠ N (0, 0.8I). The
‘additive’ trait was simulated as Y = A+ ✏.

We simulated 10,000 independent traits with both additive and genetic nurturing
e↵ects. In addition to an additive genetic component simulated as above, we also sim-
ulated a genetic nurture component. We formed parental genotypes by summing the
unnormalised genotype matrices for the mothers and fathers, and then we standardised
parental genotypes to have mean zero and variance 2. In an outbred population, the
variance for the parental genotypes is naturally twice that of the o↵spring genotype as it
is the sum of maternal and paternal genotypes. Let Gpar represent the matrix of stan-
dardised parental genotypes. The genetic nurturing component of the trait, Apar, was
then calculated as Apar = Gpar�/3, where � is the same vector of e↵ects as for the direct,
additive component, A = G�. To make the phenotypic variance approximately one, the
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noise component was simulated as ✏ ⇠ N (0, 0.6222I). The trait with genetic nurturing
e↵ects was then simulated as

Y = A+ Apar + ✏. (110)

The relatedness matrices Rsnp, Rsnp
par , Rsnp

o,par were computed from the 11,771 causal
SNPs as outlined in Section 2 and the Online Methods. GREML-SNP and RDR-SNP
analysis was performed on the traits using unconstrained restricted maximum likelihood
in GCTA34.

4.2.1 Comparing RELT-SNP and GREML-SNP

We computed both GREML-SNP and RELT-SNP estimates for the simulated traits in
the UK Biobank. For the trait determined only by additive, direct e↵ects and noise,
the mean RELT-SNP heritability estimate was 19.78% (0.16% S.E.), close to the true
heritability, 20%, and the mean GREML-SNP estimate, 19.76% (0.15% S.E.). For the
trait determined by both direct genetic e↵ects and parental genetic nurturing e↵ects,
the mean RELT-SNP heritability estimate was 35.16% (0.16% S.E.), almost exactly the
same as the mean GREML-SNP estimate, 35.15% (0.16% S.E.). These results show that
GREML-SNP and RELT-SNP estimates exhibit the same bias from genetic nurturing
e↵ects.

5 Sensitivity analysis of heritability results

We performed analyses to test whether our results were driven by atypical properties of
the sample with both parents genotyped or by di↵erences between the regions of Iceland.

5.1 Comparison to full genotyped sample

To test whether the subsample with both parents genotyped was atypical, we also com-
puted Kinship F.E. heritability estimates in a random subsample from the set of all
genotyped Icelanders in our data (Supplementary Table 5). Kinship F.E. estimates were
slightly higher on average (mean di↵erence 1.2%) in the random subsample than in the
subsample with both parents genotyped. The di↵erence was small for most traits. How-
ever, for height, the Kinship F.E. estimate was 12% higher in the random subsample,
and for educational attainment, the Kinship F.E. estimate was 6.9% lower in the random
subsample. Even though the Kinship F.E. estimate for educational attainment was 6.9%
lower in the random sample, it was still significantly di↵erent from the RDR estimate in
the sample with both parents genotyped (di↵erence=28.5%, p < 1.5⇥10�3). These results
argue that overestimation of heritability by the Kinship F.E. method is not a consequence
of atypical properties of the sample with both parents genotyped.
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5.2 Controlling for regional di↵erences

Controlling for mean di↵erences between regions can reduce confounding in Kinship type
methods. We checked whether RDR and Kinship F.E. estimates changed much when we
adjusted traits for mean di↵erences between regions of Iceland (called syslas) (Supple-
mentary Table 5). Kinship F.E. estimates reduced by 0.5% of the phenotypic variance
on average, with a max reduction of 1.8% for educational attainment. RDR estimates
reduced by 0.1% on average, with a max reduction of 1.3% for educational attainment.
These results show our analysis is robust to controlling for mean di↵erences between re-
gions. However, we chose not to control for region (sysla) in our main analysis because
controlling for regional di↵erences removes part of the phenotypic variation, which could
bias heritability estimates for the overall population.
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A Indirect genetic e↵ects

When the genotype of one individual a↵ects the environment of another, i.e. when there
is an ‘indirect genetic e↵ect’, this complicates separation of genetic and environmental
components of the covariance between the pair of individuals. In particular, for a pair
i, j, where the genotype of i a↵ects the environment of j and vice-versa, what we term a
‘reciprocal genetic e↵ect’, this implies a component of the covariance between the envi-
ronments of i and j is proportional to the genetic relatedness between i and j, making it
impossible to distinguish from the covariance due to directly inherited genetic variants.
These reciprocal genetic e↵ects are expected to be strongest for close relatives of the
same generation and other pairs of individuals that have many opportunities for social
interaction during development.

When there are reciprocal genetic e↵ects between siblings, this can create large biases
for heritability estimation methods based on sibling pairs, such as Sib-Regression5 and
twin studies.

To illustrate the problems introduced by reciprocal genetic e↵ects between relatives,
we consider a simple model where the genotype of one sibling, i, directly a↵ects the
phenotype of the other, Y sib

i :

Yi = �gi + ↵gsibi + ⇠i, Y
sib
i = �gsibi + ↵gi + ⇠sibi ; (111)

where ⇠sibi and ⇠i are independent of gi and gsibi .

A.1 Covariance between siblings

The covariance between the siblings’ phenotypes is:

Cov(Yi, Y
sib
i ) = (vg + ↵22f(1� f))Risib(i) + �↵2f(1� f)[Rii + Rsib(i)sib(i)] + Cov(⇠i, ⇠

sib
i ),
(112)

where Risib(i) is the relatedness between the siblings, and Rsib(i)sib(i) is the relatedness of
the sibling of i with itself. Let vr = ↵22f(1� f).

While this model is too simple to be realistic, it demonstrates that a method that
looks only at the relatedness between siblings, such as Sib-Regression, will be expected
to overestimate vg in proportion to vr.

A.2 E↵ect on RDR estimator of heritability

We give a proof (Theorem 2 and Corollary 2.1) that, assuming the proportion of pairs in
the sample exhibiting indirect genetic e↵ects tends to zero as sample size grows, the RDR
estimator is consistent. In this section, we complement this by giving intuition on the
e↵ect of a specific model of reciprocal genetic e↵ects on the RDR estimator of heritability.
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The covariance between an arbitrary pair of individuals in this model would be

Cov(Yi, Yj) = vgRij + �↵2f(1� f)[Risib(j) + Rjsib(i)] + vrRsib(i)sib(j) + Cov(⇠i, ⇠j), (113)

where Rsib(i)sib(j) is the additive relatedness between the sibling of i and the sibling of j.
Over all pairs that are not siblings, Rij would be correlated with Rsib(i)sib(j). However,

this correlation would be entirely mediated through the relatedness between the parents
of i and the parents of j (Relatedness Disequilibrium Lemma (1)). A similar argument
can be made that, although Rij and Risib(j) + Rjsib(i) would be correlated over all pairs,
this would be mediated through the relatedness between i and the parents of j and j
and the parents of i, which is captured by [Ro,par]ij (there is a similar but more formal
argument in the proof of consistency (Theorem 2)). Therefore, fitting the relatedness
disequilibrium covariance model, which jointly fits Rij, [Ro,par]ij, and [Rpar]ij, would not
result in any bias in the estimation of vg over non-sibling pairs.

It would be expected that any bias in the RDR estimator of vg from sibling reciprocal
genetic e↵ects would be in proportion to the proportion of sibling pairs in the sample.
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B Conditional Independence Lemma

While the following has probably been proven before, we prove it here for completeness.

Lemma 3. Consider random variables x, y, and random column vector z such that
x? y | z, and, for constants ↵ and b, and a constant vector of length equal to z, a,

E[x|z] = ↵ + baT z, (114)

i.e. the the conditional expectation of x given z is a linear function of some linear com-
bination of the elements of z, then

Cov(x, r) = 0, where r = y � Cov(y, aT z)

Var(aT z)
aT z (115)

Remark. This means that if the expectation of x given z is a linear function of the
elements of z, and if x is independent of y given z, then the residual of the regression of y
on aT z is uncorrelated with x. Note that we only assume that there is a linear relationship
between x and z, not y and z.

Proof. To prove it, first note that by standard regression theory,

b =
Cov(x, aT z)

Var(aT z)
, (116)

so
Cov(x, r) = Cov(y, x)� Cov(y, aT z)b. (117)

It therefore su�ces to show that Cov(y, x) = Cov(y, aT z)b.
By the Law of Total Covariance

Cov(y, x) = Ez[Cov(y, x|z)] + Covz(E[x|z],E[y|z]) = Covz(E[x|z],E[y|z]), (118)

as Cov(y, x|z) = 0, because x? y | z. Therefore,

Cov(y, x) = Covz
�
↵ + baT z,E[y|z]

�
= Cov(E[y|z], aT z)b (119)

It now su�ces to show that Cov(y, aT z) = Cov(E[y|z], aT z). Without loss of generality,
for some ✏ such that E[✏|z] = 0,

y = E[y|z] + ✏. (120)

Therefore, Cov(y, aT z) = Cov(E[y|z], aT z) + Cov(✏, aT z). Cov(✏, aT z) = Ez[aT zE[✏|z]] �
E[aT z]E[✏] = �E[aT z]E[✏], as E[✏|z] = 0. We also have that E[✏] = Ez[E[✏|z]] = 0.
Therefore, Cov(✏, aT z) = 0 and Cov(y, aT z) = Cov(E[y|z], aT z), implying

Cov(y, x) = Cov(y, aT z)b ) Cov(x, r) = 0. (121)
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C Conditional expectation results for relatedness ma-

trices

Lemma 4. Let
IBDpar

ij = {IBDk0l0

k(i)l(j)(s)}k,l,k0,l0=m,p; s=1,...,L, (122)

then, for i, j such that i and j are not related by direct descent and are not monozygotic
twins,

E[Rij|IBDpar
ij ] =

1

2
[Rpar]ij and E[[Ro,par]ij|IBDpar

ij ] = [Rpar]ij. (123)

Proof. First consider, because the segregation events in the parents of i and j are inde-
pendent Bernoulli(0.5) variables,

E[IBDkl
ij |IBD

par
ij ] =

1

4

X

k0,l0=m,p

IBDk0l0

k(i)l(j) = Kk(i)l(j). (124)

Therefore,

E[Rij|IBDpar
ij ] =

1

2

P
k,l=m,p E[IBD

kl
ij |IBD

par
ij ]� 4K0

1�K0
(125)

E[Rij|IBDpar
ij ] =

1

2

Kp(i)p(j) +Kp(i)m(j) +Km(i)p(j) +Km(i)m(j) � 4K0

1�K0
=

1

2
[Rpar]ij. (126)

From the Relatedness Disequilibrium Lemma (Lemma 1),

Kip(j) =
1

4

X

k=m,p

X

k0,l0=m,p

1

L

LX

s=1

Ikk0(i, s)IBD
k0l0

k(i)p(j)(s). (127)

Therefore,

E[Kip(j)|IBDpar
ij ] =

1

2

X

k=m,p

1

4

X

k0,l0=m,p

IBDk0l0

k(i)p(j) =
1

2
(Km(i)p(j) +Kp(i)p(j)) (128)

) E[Kip(j) +Kim(j) +Km(i)j +Km(i)j|IBDpar
ij ] = Kp(i)p(j) +Kp(i)m(j) +Km(i)p(j) +Km(i)m(j).

(129)
) E[[Ro,par]ij|IBDpar

ij ] = [Rpar]ij. (130)

Remark. When i is a direct ancestor of j, or vice-versa, the segregation events that
determine which ancestral material j inherits and which i inherits are not independent,
so these relationships do not hold.

It is easy to show that, in an infinite, outbred population, when i is a parent of j or
vice-versa, Rij = 0.5, [Rpar]ij = 0.5, and E[[Ro,par]ij] = 3/4.
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Lemma 5. Let
I(i) = {Ikm(i, s)}k=m,p;s=1,...,L (131)

represent the segregation variables relevant for the genotype of i, then, for i, j such that
i and j are not related by direct descent and are not monozygotic twins,

E[Rij|IBDpar
ij , I(i)] =

Kip(j) +Kim(j) � 2K0

1�K0
. (132)

Proof. From Lemma 4, we have by addition

Kip(j) +Kim(j) =
1

4

X

k,l=m,p

X

k0,l0=m,p

1

L

LX

s=1

Ikk0(i, s)IBD
k0l0

k(i)l(j)(s). (133)

From the Relatedness Disequilibrium Lemma, we have

IBDkl
ij =

X

k0,l0=m,p

1

L

LX

s=1

Ikk0(i, s)Ill0(j, s)IBD
k0l0

k(i)l(j)(s). (134)

E[IBDkl
ij |IBD

par
ij , I(i)] =

1

2

X

k0,l0=m,p

1

L

LX

s=1

Ikk0(i, s)IBD
k0l0

k(i)l(j)(s). (135)

Therefore,

X

k,l=m,p

E
⇥
IBDkl

ij |IBD
par
ij , I(i)

⇤
=

1

2

X

k,l=m,p

X

k0,l0=m,p

1

L

LX

s=1

Ikk0(i, s)IBD
k0l0

k(i)l(j)(s) (136)

= 2(Kip(j) +Kim(j)).

) E[Rij|IBDpar
ij , I(i)] =

Kip(j) +Kim(j) � 2K0

1�K0
. (137)

Corollary 5.1. By symmetry, we have,

E[Rij|IBDpar
ij , I(j)] =

Kjp(i) +Kjm(i) � 2K0

1�K0
. (138)

Therefore,
E[Rij|IBDpar

ij , I(j)] + E[Rij|IBDpar
ij , I(i)] = [Ro,par]ij. (139)
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D Variances of quadratic forms in normal random

variables

Any real, [n ⇥ n] symmetric matrix R = RT defines a quadratic form in n variables,
y = [y1, y2, ..., yn]T :

y
TRy =

nX

i=1

nX

j=1

yiRijyj. (140)

If the n variables have a multivariate normal distribution,

y ⇠ N (0,⌃), (141)

then the distribution of the quadratic form can be easily derived. First, y has the same
distribution as ⌃

1
2z, where z ⇠ N (0, I). Therefore,

y
TRy

d
= z

T⌃
1
2R⌃

1
2z. (142)

Since R is symmetric and ⌃ is a covariance matrix, so therefore also symmetric, ⌃
1
2R⌃

1
2

is symmetric and has eigendecomposition

⌃
1
2R⌃

1
2 = U�UT , where UUT = UTU = I, (143)

and where � is a diagonal matrix containing the eigenvalues of ⌃
1
2R⌃

1
2 . This implies that

y
TRy

d
= z

TU�UT
z = z̃

T�z̃ =
nX

i=1

�iz̃
2
i , (144)

where z̃ = UT
z ⇠ N (0, I). The z̃2i are distributed as independent �2

1 random variables.
The distribution of the quadratic form is thus a linear combination of independent �2

1

random variables, with coe�cients given by the eigenvalues of ⌃
1
2R⌃

1
2 .

This gives the mean and variance of the quadratic form as

E[yTRy] =
nX

i=1

�i; Var(y
TRy) = 2

nX

i=1

�2
i . (145)

If the mean and variance converge to finite values with n, then, by the Central Limit
Theorem,

y
TRy

d! N
 

nX

i=1

�i, 2
nX

i=1

�2
i

!
. (146)

We provide a simpler expression for the variance of a quadratic form that is easier to
compute than directly computing eigenvalues of ⌃

1
2R⌃

1
2 :

Var(yTRy) = 2
nX

i=1

�2
i = 2Tr(⌃

1
2R⌃

1
2⌃

1
2R⌃

1
2 ) = 2Tr(R⌃R⌃) = 2||R⌃||2F . (147)
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D.1 Covariances

We use the above results to derive the covariance between two real, symmetric quadratic
forms in normal variables:

Cov(yT
1 R1y1,y

T
2 R2y2) = 2Tr(R1⌃12R2⌃

T
12) = 2hR1⌃12,⌃12R2iF , (148)

for 
y1

y2

�
⇠ N

✓
0,


⌃11 ⌃12

⌃T
12 ⌃22

�◆
. (149)

This is derived by considering Var(yT
1 R1y1 + y

T
2 R2y2), which can be computed from the

previous results. First, yT
1 R1y1+y

T
2 R2y2 can be expressed as a real, symmetric quadratic

form:

y
T
1 R1y1 + y

T
2 R2y2 =


y1

y2

�T 
R1 0
0 R2

� 
y1

y2

�
. (150)

Using the previous results, this gives

Var(yT
1 R1y1 + y

T
2 R2y2) = Var(yT

1 R1y1) + Var(yT
2 R2y2) + 4Tr(R1⌃12R2⌃

T
12), (151)

and therefore

Cov(yT
1 R1y1,y

T
2 R2y2) = 2Tr(R1⌃12R2⌃

T
12) = 2hR1⌃12,⌃12R2iF , (152)

where hA,BiF is the Frobenius inner product between two matrices A and B.
It is then trivial to derive the correlation between two quadratic forms:

Corr(yT
1 R1y1,y

T
2 R2y2) =

hR1⌃12,⌃12R2iFp
||R1⌃11||2F ||R2⌃22||2F

. (153)
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E Mathematical definitions

Definition E.1. The father of i is denoted as p(i).

Definition E.2. The mother of i is denoted as m(i).

Definition E.3. The genotype of individual i is the number of copies of an allele at a
locus in individual i’s genome: gi = gpi + gmi , where gpi is an indicator variable for the
presence of the allele on the paternally inherited chromosome, and gmi is an indicator
variable for the presence of the allele on the maternally inherited chromosome.

Definition E.4. The parental genotype of individual i is the number of copies of an allele
at a locus in the genomes of the mother of i and the father of i: gpari = gm(i) + gp(j) =
gpm(i) + gmm(i) + gpp(i) + gmp(i), where gm(i) is the genotype of the mother of i, and gp(j) is the
genotype of the father of j.

Definition E.5. For k, l = m,p, and for s = 1, . . . , L,

IBDkl
ij (s) =

⇢
1 if k-chromosome of i is IBD with l-chromosome of j at position s;
0 otherwise.

Definition E.6. For k, l = m,p,

IBDkl
ij = P(the k-variant of i is IBD with the l-variant of j) (154)

=
1

L

LX

s=1

IBDkl
ij (s)

Definition E.7.

IBDpar
ij = {IBDk0l0

k(i)l(j)(s)}k,l,k0,l0=m,p; s=1,...,L (155)

Definition E.8. For k, k0 = m,p, where ‘m’ indicates ‘maternal’ and ‘p’ indicates ‘pater-
nal’, we define the segregation variables in the parents of i:

Ikk0(i, s) =

8
<

:

1 if the genetic variant at position s on the k-chromosome of i
was inherited from the k0 parent of k;

0 otherwise.
(156)

Definition E.9.

I(i) = {Ikm(i, s)}k=m,p;s=1,...,L (157)

Definition E.10. Kinship between i and j:

Kij =
1

4

X

k,l=m,p

IBDkl
ij . (158)
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Definition E.11. The mean kinship in the population is K0.

Definition E.12. Additive relatedness between i and j:

Rij =
1

2

X

k,l=m,p

IBDkl
ij �K0

1�K0
. (159)

Definition E.13. Additive relatedness between the parents of i and the parents of j:

[Rpar]ij =
Kp(i)p(j) +Kp(i)m(j) +Km(i)p(j) +Km(i)m(j) � 4K0

1�K0
, (160)

where Kp(i)m(j) is the kinship between the father of i and the mother of j, etc.

Definition E.14.

[Ro,par]ij =
Kip(j) +Kim(j) +Kp(i)j +Km(i)j � 4K0

1�K0
, (161)

where Kim(j) is the kinship between i and the mother of j, and Kp(i)j is the kinship between
j and the father of i, etc.

Glossary

identity-by-descent A segment of a chromosome on two or more haplotypes is said to be
identical-by-descent if that segment was inherited from a common ancestor without
recombination. The identity-by-descent sharing states between two chromosomes
reflect which segments of the chromosomes are identical-by-descent. 5, 11, 15

indirect genetic e↵ect An e↵ect of genetic material in one individual on another indi-
vidual through the environment. 8, 29

parental genetic nurturing e↵ect A specific type of indirect genetic e↵ect where the
genotype of the parent a↵ects the trait of the o↵spring through its environment. 4

reciprocal genetic e↵ect A specific type of indirect genetic e↵ect between a pair of
individuals: the genotype of one individual a↵ects the environment of the other and
vice-versa. 6, 8, 29, 30
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