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Heritability is a measure of the proportion of trait variation 
due to genetic inheritance within a population. Estimation 
of the relative importance of genetic inheritance (nature) ver-

sus environment (including nurture) has generated much contro-
versy1. Historically, most estimates of heritability for human traits 
have come from twin studies2,3. Some more recent methods estimate 
heritability by modeling the effects of genome-wide SNPs4. We refer 
to these methods as GREML-SNP methods, which reference infer-
ence on genomic relatedness, estimated from SNPs, with restricted 
maximum likelihood (REML). To decrease the influence of nonad-
ditive genetic effects and environmental effects, samples are pruned 
so that no pair is related above a low threshold4.

Instead of modeling the effects of SNPs, heritability can be esti-
mated by examining how phenotypic similarity changes with relat-
edness. Relatedness is measured as the fraction of the genome that 
a pair shares in segments inherited from a common ancestor, called 
identical-by-descent (IBD) segments. (We note that what we call 
relatedness herein has sometimes been termed ‘realized related-
ness’ to distinguish it from expected relatedness given a pedigree.5) 
Sharing of an IBD segment implies sharing of all genetic variants 
in that segment, except for mutations that occurred since the last 
common ancestor of the segment, thus further implying that IBD-
based methods can capture nearly all of the heritability of a trait. 
In contrast, GREML-SNP methods can capture only the fraction of 
the heritability explained by genotyped SNPs4. Another advantage 
of IBD-based methods over GREML-SNP methods is that they do 
not make assumptions about the distribution of SNP effect sizes. 
Violation of these assumptions has been shown to introduce bias to 
GREML-SNP estimates of heritability4,6.

An IBD-based method, which we call the ‘Kinship’ method, 
examines how phenotypic similarity increases with relatedness 
for all pairs from a population sample7. When close relatives have 
more similar environments than distant relatives, the Kinship 
method overestimates heritability because it is unable to distinguish 
between similarity due to genetic effects and environmental effects. 

To decrease environmental bias, modeling of environmental effects 
shared between close relatives has been suggested8,9. However, envi-
ronmental similarity may increase with relatedness across much of 
the relatedness spectrum: siblings may have more similar environ-
ments than cousins, and so on, down to distant relatives. In that case, 
modeling environmental covariance between close relatives alone 
would not remove environmental bias from the Kinship method. 
Although an extension to the Kinship method has been developed 
that models spatially distributed environmental effects10, most envi-
ronmental effects do not follow a simple spatial distribution.

A different IBD-based method, which we call ‘Sib-Regression’, 
restricts the analysis to sibling pairs5. There are two copies of each 
piece of DNA in each parent. Whether a sibling inherits one or 
the other copy of a piece of DNA from a parent resembles the out-
come of a fair coin toss. The coin toss represents the outcome of 
random Mendelian segregation of DNA in the parent during meio-
sis. Whether both siblings inherit the same copy of a piece of DNA 
resembles whether two independent tosses of a fair coin will both 
have the same outcome. Therefore, the siblings inherit the same 
copy of DNA from a parent half the time on average. Most of the 
variation around the average relatedness is due to random segrega-
tions in the parents of the siblings. The random segregations are 
independent of almost all environmental effects. Sib-Regression 
therefore avoids most sources of environmental bias. However, Sib-
Regression requires hundreds of thousands of genotyped sibling 
pairs to obtain precise heritability estimates, whereas existing appli-
cations have used ~20,000 sibling pairs or fewer5,11.

Here, we introduce RDR, a novel method for estimating herita-
bility. RDR examines how much more or less related a pair is than 
would be expected from the relatedness of the parents. We call this 
deviation relatedness disequilibrium. Relatedness disequilibrium is 
due to random Mendelian segregations in the parents during meio-
sis and consequently is independent of almost all environmental 
effects. Unlike Sib-Regression, RDR can use any pair of individuals, 
provided that there is genetic information on the parents of the pair. 
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By using all pairs from a large sample with both parents genotyped, 
RDR can provide precise estimates of heritability with negligible 
bias due to environment. We applied RDR to estimate the heritabil-
ity of 14 quantitative traits in Iceland.

Results
Defining heritability through random segregation. We first dis-
tinguish direct genetic effects and indirect genetic effects: a direct 
genetic effect is the effect of genetic material in a body on that body, 
whereas an indirect genetic effect is the effect on another body 
(Supplementary Note)12–14. For example, if parenting affects the edu-
cational attainment of offspring, then there could be indirect genetic 
effects from parent to offspring, which we term parental genetic 
nurturing effects14. Any allele inherited by the phenotyped individ-
ual (proband) would also be present in one of its parents, implying 
that the allele can have both direct and parental genetic nurturing 
effects on the proband. However, parental genetic nurturing effects, 
and other indirect genetic effects, are environmental effects from the 
perspective of the individual whose trait is affected. The heritability 
of the trait is thus defined as the fraction of trait variation in the 
population that is explained by direct genetic effects alone.

To separate variation due to direct genetic effects (heritability) 
from variation explained by the environment, we use random segre-
gation during meiosis. This approach is analogous to the transmis-
sion disequilibrium test (TDT) for a direct genetic effect of an allele 
on a phenotype15–17. The proband’s genotype is determined by the 
genotypes of the proband’s parents and random segregations. The 
TDT looks for an association between the phenotype and the varia-
tion in proband genotype caused by random segregations in the 
parents. This procedure separates association due to direct genetic 
effects from association due to environment. Similarly, through use 
of random segregation, phenotypic variation can be decomposed 
into variation due to direct genetic effects alone and other compo-
nents. Assuming that direct genetic effects are additive, and there is 
no gene-by-environment interaction, the decomposition is as fol-
lows (Supplementary Note):

= + + + ϵ~Y v v cvar( ) var( ) (1)g e g g e,

where vg  is the variance explained by direct genetic effects, and 
= ∕h v Yvar( )g

2  is the heritability; ~ve g  is the variance of the part 
of the environmental component of the phenotype that is correlated 
with parental genotype, which includes the variance explained by 
(additive) parental genetic nurturing effects; cg e,  is the covariance 
between direct genetic effects and environmental effects; and ϵvar( )  
is the variance of the component of the phenotype that is uncorre-
lated with both proband genotype and parental genotype.

RDR covariance model. The variance decomposition (equation (1))  
leads to a decomposition of the covariance matrix of a vector 
of observations of a phenotype, Y. Under certain assumptions 
(Supplementary Note):

= + + + ϵ~Y v R v R c Rcov( ) cov( ) (2)g e g g e opar , ,par

where R[ ]ij is the relatedness of individual i and individual j; R[ ]ijpar  
is the relatedness of the parents of i and the parents of j; and R[ ]o ij,par  
is the relatedness of i and the parents of j, and of j and the parents 
of i (Online Methods). In general, ϵcov( )  is unknown and can be 
similar to R. For example, family environment effects that are inde-
pendent of genetics cause closely related pairs to be more similar 
than distantly related pairs. Furthermore, pairs that are more related 
than average are more likely to be from the same region and conse-
quently to have more similar environments10.

To fit the RDR covariance model, we make the simplify-
ing assumption that σϵ =cov( ) I2 . Importantly, violation of the 

assumption that σϵ =cov( ) I2  does not introduce bias to RDR esti-
mates of heritability, as we outline below.

Environmental bias properties of RDR. Through use of random 
segregation, both RDR and the TDT separate direct genetic effects 
from environmental effects. The TDT achieves this separation by 
conditioning on parental genotype, whereas RDR achieves this 
separation by conditioning on parental relatedness. The expecta-
tion of an offspring’s genotype given its parents’ genotype is one-
half the sum of the parents’ genotypes, and any variation around 
this expectation comes from random segregation. Similarly, the 
expectation of offspring relatedness, R[ ]ij, given parental related-
ness, R[ ]ijpar , is ∕R[ ] 2ijpar , and any variation around this expectation 
comes from random segregation (Fig. 1, Supplementary Figure 1 
and Supplementary Note). (Of note, this relationship does not hold 
for pairs in which one is the direct ancestor of the other, such as 
parent–offspring pairs.)

By fitting R and Rpar jointly, RDR uses the variation in R[ ]ij 
around its expectation, ∕R[ ] 2ijpar , to estimate heritability. We call 
this variation relatedness disequilibrium. For a pair, relatedness 
disequilibrium is caused by random segregations in the parents of 
the pair and thus is independent of sharing of all environmental 
effects apart from indirect genetic effects between the pair. This 
insight forms the basis of a mathematical proof that heritability esti-
mates from RDR converge to the true heritability, when the sample 
excludes pairs that have indirect genetic effects on each other and 
also excludes pairs in which one is the direct ancestor of the other 
(Supplementary Note). If indirect genetic effects are restricted to 
close relatives, the bias is likely to be small for RDR, because close 
relatives comprise only a small fraction of the pairs in a large pop-
ulation sample. The bias due to indirect genetic effects could be 
much larger for methods that rely on close relatives, such as Sib-
Regression and twin studies.

Pairs in which one is the direct ancestor of the other can intro-
duce bias because they have an atypical relationship between R[ ]ij 
and R[ ]ijpar  (Fig. 1). However, they will comprise only a small frac-
tion of the total pairs in a large population sample, even if multiple 
generations are genotyped. For our sample, approximately 30% also 
have a parent or grandparent in our sample, but parent–offspring 
and grandparent–grandchild pairs comprise only 0.0014% of all 
pairs. In simulations, because we were unable to detect bias aris-
ing from the inclusion of parent–offspring and grandparent–grand-
child pairs (Online Methods and Supplementary Table 1), we did 
not remove individuals from our sample that also had a parent or 
grandparent in our sample.

Simulation of RDR heritability estimation. We tested RDR for 
simulated traits in our sample and compared RDR to (i) Sib-
Regression, (ii) the Kinship method, and (iii) the Kinship method 
allowing for an effect of shared family environment, which we 
denote the ‘Kinship F.E.’ method. We determined whether pairs 
shared a family environment according to whether they shared 
a mother in the deCODE Genealogy Database. The modeling 
of the environment in the Kinship F.E. model was similar to a 
recently proposed extension of the Kinship model8. We randomly 
selected 10,000 SNPs to act as causal SNPs in our simulations 
(Online Methods). The SNPs had a minimum minor allele fre-
quency (MAF) of 0.5% and a median MAF of 22.8%. We simulated 
traits in a random subsample of 10,000 individuals who had both  
parents genotyped for all the methods other than Sib-Regression, 
for which we used all 54,888 individuals who had both parents 
genotyped.

We first confirmed that the heritability estimates for all the meth-
ods were approximately unbiased for traits determined by additive, 
direct genetic effects and random noise (additive trait; Table 1 and 
Supplementary Tables 2 and 3).

Nature Genetics | VOL 50 | SEPTEMBER 2018 | 1304–1310 | www.nature.com/naturegenetics 1305

http://www.nature.com/naturegenetics


Articles NaTuRe GeneTIcs

We simulated a trait in which individuals who shared a mother 
shared a random environmental effect. We found that the Kinship 
method greatly overestimated the heritability of this trait (maternal-
environment trait; Table 1). However, the Kinship F.E. estimates of 
heritability were approximately unbiased. Both Sib-Regression and 
RDR estimates were approximately unbiased.

The results for the maternal-environment trait show that model-
ing a family environment effect can remove bias from the Kinship 
method in certain circumstances. However, when indirect genetic 
effects from relatives are present, modeling the family environment 
is ineffective at removing bias. As a demonstration, we simulated a 
trait determined by direct genetic effects, parental genetic nurtur-
ing effects, and random noise (genetic nurturing trait; Table 1). For 
the simulated trait, the genetic nurturing effect of each SNP was a 
fixed fraction of its direct effect, thus yielding a substantial covari-
ance term, cg e, . The variance components as a percentage of the phe-
notypic variance were =v 40%g , =~v 10%e g , and ≈c 28%g e, , thereby 
bringing the total variance explained by parent and offspring geno-
type to ~78%.

We found that the Kinship method greatly overestimated the 
heritability of the genetic nurturing trait. Modeling of the family 
environment only slightly decreased the bias, and, on average, the 
Kinship F.E. estimates of heritability were more than twice the true 
value. This result was due to the fact that parental genetic nurturing 
effects induce correlations between all pairs with nonzero paren-
tal relatedness, not just those sharing a family environment, which 

leads to an increase in environmental similarity with relatedness 
across the relatedness spectrum.

We simulated a trait affected by population stratification. For 
this trait, each region of Iceland had a different mean trait value 
(Supplementary Note). We found that the Kinship and Kinship F.E. 
estimates of heritability were upwardly biased when we adjusted for 
20 genetic principal components (regional trait; Table 1). After we 
adjusted for 100 principal components, the mean Kinship F.E. heri-
tability estimate was 57.6% (s.e. 0.21%), a value still considerably 
larger than the true heritability of 40%. In contrast, the RDR esti-
mates were approximately unbiased, because relatedness disequilib-
rium is caused by random segregations and therefore is uncorrelated 
with regional colocalization.

In some cases, IBD-based methods such as RDR do not capture 
the phenotypic variance explained by recent mutations, which are 
rare in the population. To measure how well RDR captures vari-
ance from rare variants, we simulated a trait determined by addi-
tive, direct effects of SNPs with MAFs between 1% and 0.1%, and a 
median MAF of 0.26% (Supplementary Note). RDR captured ~88% 
of the variance explained by the rare SNPs.

We found that RDR estimates were insensitive to nonadditive 
genetic effects. The mean RDR estimates were close to the true narrow-
sense heritability (40%) for traits influenced by both pairwise interac-
tions between SNPs and dominance effects (Table 1). In contrast, the 
mean Sib-Regression estimates were close to the sum of the variance 
explained by additive and nonadditive genetic effects (Table 1).

RDR estimates of heritability for 14 human traits. We estimated 
the variance components of the RDR covariance model for 14 quan-
titative traits (Online Methods, Table 2, Supplementary Table 4 and 
Supplementary Figure 2). For the exact same probands to which 
RDR was applied, heritability estimates were obtained from the 
Kinship and Kinship F.E. methods (Online Methods, Table 2 and 
Fig. 2). For 11 of the 14 traits, the Kinship F.E. estimate, hKinFE

2 , is 
larger than the RDR estimate, hRDR

2  (average −h hKinFE
2

RDR
2  =​ 12.1%). 

We found that hKinFE
2  was statistically significantly higher than 

hRDR
2  (P <​ 0.05, one-sided Z-test assuming that hKinFE

2  and hRDR
2  

are independent, so P values represent an upper bound) for edu-
cational attainment ( −h hKinFE

2
RDR
2  =​ 35.4%, P <​ 2.2 ×​ 10−4), height 

( −h hKinFE
2

RDR
2  =​ 22.6%, P <​ 1.3 ×​ 10−6), body mass index (BMI) 

( −h hKinFE
2

RDR
2  =​ 17.8%, P <​ 4.3 ×​ 10−3), and age at first child in women 

( −h hKinFE
2

RDR
2  =​ 10.9%, P <​ 0.043). We found no evidence that differ-

ences between hKinFE
2  and hRDR

2  were driven by atypical properties of 
the sample with both parents genotyped or by differences in mean 
trait values among the regions of Iceland (Supplementary Note and 
Supplementary Table 5).

Using Icelandic data, but without limiting to probands with 
parents genotyped, we computed Sib-Regression estimates of her-
itability, denoted hsib

2  (Online Methods, Table 2 and Fig. 2). RDR 
estimates were more precise than Sib-Regression estimates for every 
trait, and, on average, the estimated standard errors for hsib

2  were 
2.5 times larger than those for hRDR

2 , thus implying that the effective 
sample size for RDR was approximately 6.25 times higher than that 
for Sib-Regression. If a difference between RDR and Sib-Regression 
exists, it may be a consequence of indirect genetic effects between 
siblings18, epistasis, dominance, and/or rare variants. However, the 
lack of precision in Sib-Regression estimates suggests that the power 
to detect differences is low, and we did not find any statistically 
significant differences.

There were not enough monozygotic twins in the Icelandic data 
to obtain precise twin estimates of heritability. To compare RDR 
results with twin studies from a similar population, we took esti-
mates from the Swedish Twin Registry19, denoted htwin

2 , which were 
available for 9 of the 14 traits (Online Methods, Table 2, Fig. 2 and 
Supplementary Table 6). The difference −h htwin

2
RDR
2  was greater than 
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Fig. 1 | Relatedness disequilibrium. For all pairs of individuals i, j from 
20,000 Icelanders with both parents genotyped, the relatedness of i and j, 
R[ ]ij, is compared to the relatedness of the parents of i and the parents of j, 
R[ ]ijpar . The number of pairs in each hexagonal bin is indicated by shading. 

Relationships determined according to the deCODE Genealogy Database 
are indicated: GP–GC, grandparent–grandchild; P–O, parent–offspring; 
and sibling. The solid diagonal line indicates the expectation of R[ ]ij, which 
is ∕R[ ] 2ijpar , except for pairs in which one is a direct ancestor of the other 
(Supplementary Note). The dashed diagonal line indicates the regression 
line (excluding parent–offspring and grandparent–grandchild pairs), with 
intercept −​1 ×​ 10−4, gradient 0.493, and variance explained 84%. The 
small deviation of the regression line from the theoretical expectation is 
probably due to some IBD segments that are shared between parents being 
broken by recombination, thus resulting in a small fraction of segments 
in the offspring being too small to detect. Relatedness disequilibrium is 
the variation in R[ ]ij around ∕R[ ] 2ijpar . Relatedness disequilibrium is due to 
independent, random segregations in the parents, except for pairs in which 
one is the direct ancestor of the other.
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zero and statistically significant (P <​ 0.05, one-sided z test) for all 
nine traits, with an average difference of 33.2%. For Sib-Regression, 
the average difference −h htwin

2
sib
2  was 26.4%. The finding that both 

RDR and Sib-Regression estimates were substantially lower than 
twin-study estimates may be due to differences in heritability 
between our sample and the samples of twins and/or overestima-
tion of heritability by twin studies.

GREML-SNP estimates are biased by genetic nurturing. SNP-
based methods, such as GREML-SNP, generally capture a smaller 
fraction of the full heritability of a trait than IBD-based methods, 
such as RDR, thus making direct comparison of environmental bias 

difficult. We therefore introduce RDR-SNP, which uses SNPs to esti-
mate the three relatedness matrices of the RDR covariance model 
(Online Methods). In other words, R, Rpar, and Ro ,par are replaced 
by estimates from a set of SNPs: Rsnp, Rpar

snp, and Ro ,par
snp . The only dif-

ference between RDR-SNP and GREML-SNP is that RDR-SNP also 
fits Rpar

snp and Ro ,par
snp  in addition to Rsnp.

To compare RDR-SNP to typical GREML-SNP analysis, we 
simulated traits in a subset of the UK Biobank20 in which genotype 
data on both parents were available (n =​ 973). As in typical GREML-
SNP analysis, we pruned the sample so that no pair of individu-
als had relatedness greater than 0.05, thus leaving 937 individuals 
(Supplementary Note).

Table 1 | Comparison of heritability estimates for simulated traits

Trait RDR Kinship Kinship F.E. Sib-Regression

Estimate (%) s.e. (%) Estimate (%) s.e. (%) Estimate (%) s.e. (%) Estimate (%) s.e. (%)

Additive 39.3 0.62 40.4 0.15 40.5 0.18 41.2 0.69

Genetic nurturing 39.4 0.49 92.7 0.09 82.8 0.14 40.4 0.37

Maternal environment 38.9 0.58 76.3 0.17 39.9 0.18 41.1 0.37

Regional 38.3 0.60 59.0 0.17 58.3 0.20 32.1 0.63

Rare SNPs 35.0 0.64 39.5 0.15 39.4 0.19 39.7 0.67

Epistatic 41.3 0.60 44.2 0.16 43.3 0.19 50.1 0.63

Dominance 40.5 0.63 42.7 0.15 41.1 0.19 50.5 0.71

The mean heritability estimates along with their standard errors, expressed as a percentage of the phenotypic variance, from four different methods (RDR, Kinship, Kinship F.E., and Sib-Regression) 
for different simulated traits. The true (narrow-sense) heritability of each trait was 40%. We simulated 500 replicates of each trait on the basis of Icelandic genetic data from a random subsample of 
10,000 individuals with both parents genotyped (Methods), except for Sib-Regression, for which we used all 54,888 individuals. Ten thousand SNPs with a median MAF of 22.8% were given additive 
effects for all the traits other than the rare SNPs trait, for which 2,200 SNPs with MAF between 0.1% and 1% (median 0.26%) were used. To the additive genetic component, only noise was added for the 
additive trait and the rare SNPs trait. For the epistatic trait, 10% of the phenotypic variance was due to pairwise interactions between SNPs. For the dominance trait, 10% of the phenotypic variance was 
due to dominance effects. For the other traits, effects representing different sources of environmental confounding were added in addition to noise and the additive genetic component. For the regional 
trait, each region of Iceland (sysla) was given an effect; for the maternal-environment trait, an environmental effect shared between those who shared mothers was added; for the genetic nurturing trait, 
the genotypes of the parents were also given effects to simulate parental genetic nurturing effects14. For the regional trait, the Kinship and Kinship F.E. methods also included adjustment for 20 genetic 
principal components.

Table 2 | Heritability estimates

Trait n RDR Kinship F.E. RDR-SNP RELT-SNP Sib-Regression Twin

Est. 
(%)

s.e. 
(%)

Est. 
(%)

s.e. 
(%)

Est. 
(%)

s.e. 
(%)

Est. 
(%)

s.e. 
(%)

Sib-pairs Est. 
(%)

s.e. 
(%)

Est. 
(%)

s.e. 
(%)

BMI 19,589 28.9 6.3 46.7 2.5 34.2 2.9 36.1 3.4 56,461 38.5 12.0 65 3.8

Height 21,802 55.4 4.4 78.0 1.9 44.5 2.3 55.2 4.4 64,847 68.4 9.6 81 –

AFCW 22,367 22.6 6.0 33.5 2.1 11.7 2.6 20.1 2.3 30,582 32.0 17.4 – –

AFCM 17,117 14.9 7.9 16.3 2.6 11.5 3.4 12.3 2.2 21,729 55.3 21.3 – –

Menarche 11,242 30.9 10.5 41.9 4.0 26.8 5.0 33.9 4.2 16,621 50.6 23.1 75 6.9

Education 12,035 17.0 9.4 52.4 3.7 17.3 4.4 29.2 4.4 32,542 39.7 14.8 43 3.6

Total cholesterol 27,320 30.6 5.0 32.2 1.8 23.5 2.3 24.2 2.2 74,271 15.1 12.9 57 3.8

HDL 24,570 44.8 5.3 45.1 2.1 32.0 2.5 29.7 2.7 67,894 50.5 11.4 69 3.1

Triglycerides 24,099 24.2 5.7 29.8 2.0 23.8 2.6 25.8 2.4 62,746 35.8 12.1 61 3.7

Glucose 19,500 15.9 7.2 23.6 2.3 15.8 3.1 16.8 2.3 36,469 29.6 18.5 59 4.0

Creatinine 38,929 22.9 3.7 22.2 1.3 16.9 1.6 17.2 1.6 98,385 4.0 11.1 59 1.5

MCH 43,917 38.5 3.2 36.8 1.2 29.3 1.5 28.7 1.9 107,711 40.3 10.2 –

MCHC 43,963 14.9 3.3 18.4 1.1 12.5 1.5 13.0 1.2 107,833 15.8 10.5 –

MCV 43,919 39.1 3.1 38.5 1.2 31.1 1.5 29.8 2.0 107,702 35.9 10.2 –

For each trait, the sample size used for the RDR, Kinship F.E., RDR-SNP, and relatedness-thresholded (RELT)-SNP methods is given under n, and the sample size for Sib-Regression is given under Sib-pairs. 
Each heritability estimate (Est.) is expressed as a percentage of the phenotypic variance and is followed by its standard error. RDR, Kinship F.E., RDR-SNP, and RELT-SNP estimates were from the exact 
same Icelandic samples with both parents genotyped, which were restricted to those born between 1951 and 1997 for BMI and traits measured from blood, and samples were restricted to those born 
between 1951 and 1995 for height. To maximize sample size, Sib-Regression estimates are from all genotyped Icelandic sibling pairs available without year-of-birth restrictions. Twin study estimates are 
from the Swedish Twin Registry19, apart from for education, which is from a meta-analysis of Scandinavian twin studies23 (Supplementary Table 6). AFCW, age at first child in women; AFCM, age at first 
child in men; menarche, age at menarche (years); education, educational attainment (years); HDL, high-density lipoprotein; glucose, fasting glucose; MCH, mean cell hemoglobin; MCHC, mean cell 
hemoglobin concentration; MCV, mean cell volume.

Nature Genetics | VOL 50 | SEPTEMBER 2018 | 1304–1310 | www.nature.com/naturegenetics 1307

http://www.nature.com/naturegenetics


Articles NaTuRe GeneTIcs

We randomly sampled 11,771 SNPs to act as causal SNPs, and we 
calculated Rsnp, Rpar

snp, and Ro ,par
snp  from this set (Supplementary Note). 

We simulated a trait determined only by additive, direct effects of 
SNPs and random noise. Both GREML-SNP and RDR-SNP esti-
mated the true heritability, 20%, without detectable bias: mean esti-
mate 19.76% (0.15% s.e.) for GREML-SNP and 19.70% (0.30% s.e.) 
for RDR-SNP.

Alleles transmitted to offspring are also present in the parents 
and thus have both direct and parental genetic nurturing effects. 
Let δ be the direct effect of a SNP, and let η be the parental genetic 
nurturing effect. The effect of the transmitted allele is therefore 
δ η+( ). GREML-SNP uses only transmitted alleles and conse-

quently is unable to separate the variance from the direct effect 
alone, which is proportional to δ2, from the variance explained by 
the combined direct and parental genetic nurturing effects, which 
is proportional to δ η+( ) 2. We performed a theoretical investiga-
tion (Supplementary Note) and simulated a trait with both direct 
and genetic nurturing effects. We set the genetic nurturing effect 

of each variant to be one-third of its direct effect, which is simi-
lar to the estimated ratio for educational attainment in Iceland14. 
The direct effects explained 20% of the phenotypic variance, thus 
implying that the total variance explained by transmitted alleles is 

+ × ≈ .( )1 20% 35 56%1
3

2
, a value much larger than the heritability 

of 20%.
The mean GREML-SNP heritability estimate was 35.15% (0.16% 

s.e.), a value very close to the total variance explained by the com-
bined direct and indirect effects of transmitted alleles (35.56%) 
and in close agreement with the results of our theoretical analysis 
(Supplementary Note). In contrast, RDR-SNP estimated heritability 
without detectable bias (mean estimate 19.70% (s.e. 0.30%)).

Evidence of bias in GREML-SNP estimates from analysis of 
Icelandic data. For typical GREML-SNP analysis, the sample is 
pruned so that no pair has relatedness above a low threshold, usu-
ally 0.025 or 0.05. When a large fraction of the sample is related 
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Fig. 2 | Comparison of heritability estimates from different methods. Horizontal intervals show ±​1.96 s.e. for the estimates on the x axis, and vertical 
intervals show ±​1.96 s.e. for the estimates on the y axis. Numerical values are in Table 2. a, Comparison of RDR to Kinship F.E. b, Comparison of RDR-
SNP to RELT-SNP. c, Comparison of RDR to Sib-Regression5 estimates. Intervals for the RDR estimates are not shown to better display Sib-Regression 
intervals. d, Comparison to published twin-study estimates from the Swedish Twin Registry19, apart from for education, which is from a meta-analysis 
of Scandinavian twin studies23 (Supplementary Table 6). AFCW, age at first child in women; AFCM, age at first child in men; education, educational 
attainment (years); cholesterol, total cholesterol; HDL, high-density lipoprotein; glucose, fasting glucose; MCH, mean cell hemoglobin; MCHC, mean cell 
hemoglobin concentration; MCV, mean cell volume.
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to another person in the sample above threshold levels, such as in 
our Icelandic sample, this approach entails a large loss of sample 
size. A similar approach that avoids a large loss in sample size is to 
regress elements of the sample phenotypic covariance matrix onto 
Rsnp only for those pairs whose relatedness is less than the threshold. 
We call this approach relatedness-thresholded (RELT)-SNP. If the 
same relatedness threshold is applied, GREML-SNP and RELT-SNP 
estimates from large samples would be expected to be highly simi-
lar under most conditions. By applying RELT-SNP to the simulated 
traits in the UK Biobank, we showed that RELT-SNP and GREML-
SNP gave very similar estimates and exhibited the same bias due to 
parental genetic nurturing effects (Supplementary Note).

In the Icelandic sample, we compared RDR-SNP to RELT-SNP 
with a relatedness threshold of 0.05 (Online Methods). We first 
computed RDR-SNP and RELT-SNP estimates for the simulated 
traits, whose true heritability was 40% (Supplementary Table 7). 
 When we used the causal variants to calculate Rsnp, Rpar

snp, and 
Ro ,par

snp , both RDR-SNP and RELT-SNP gave approximately unbi-
ased estimates of heritability for the additive, maternal, epistatic, 
and dominance traits. For the genetic nurturing trait, the average 
RELT-SNP estimate was .74 1% ( .0 14% s.e.), a value close to the vari-
ance explained by combined direct and genetic nurturing effects, 
~73.3%. In contrast, the RDR-SNP estimates were approximately 
unbiased ( = .h 40 1%2 , .0 07% s.e.). When the causal variants differed 
from the variants used to calculate the relatedness matrices, a bias 
was introduced to RDR-SNP, RELT-SNP, and GREML-SNP esti-
mates (Supplementary Table 7).

For the real traits, we estimated heritability by using related-
ness matrices calculated from 605,966 genome-wide SNPs typically 
found on Illumina genotyping arrays (Online Methods, Table 2 and 
Supplementary Table 8). We found that −hRELT SNP

2  was statistically 
significantly higher than −hRDR SNP

2  (P <​ 0.05, one-sided z test under 
the assumption that −hRDR SNP

2  and −hRELT SNP
2  are independent, so 

P values represent an upper bound) for height ( = .−

−
1 24h

h
RELT SNP
2

RDR SNP
2

,  

P <​ 0.015), age at first child in women ( = .−

−
1 72h

h
RELT SNP
2

RDR SNP
2

, P <​  

7.6 ×​ 10−3), and educational attainment (years) ( = .−

−
1 69h

h
RELT SNP
2

RDR SNP
2

,  
P <​ 0.027) (Methods).

Discussion
We introduced RDR, a novel heritability estimation method, and 
used it to estimate heritability for 14 quantitative traits in Iceland. 
Through mathematical investigations and simulations, we demon-
strated that RDR estimates of heritability have negligible bias due to 
environment. In contrast, GREML-SNP, the Kinship method, and 
the Kinship F.E. method showed substantial bias due to indirect 
genetic effects from relatives. The GREML-SNP simulations showed 
that removing close relatives does not remove bias due to indirect 
genetic effects from relatives. Our results suggest that GREML-SNP 
estimates can be interpreted as estimates of the variance explained 
by the combined direct and indirect effects of transmitted alleles, 
rather than the heritability.

For educational attainment, there is evidence of a substantial con-
tribution from indirect genetic effects from parents and siblings14. 
Those results suggest that educational-attainment heritability esti-
mates from GREML-SNP8,21 and the recently proposed extension to 
the Kinship model8 are likely to be upwardly biased. We estimated 
that GREML-SNP estimates of the heritability of educational attain-
ment may be inflated by a factor of approximately 1.69. This infla-
tion factor is consistent with genetic nurturing effects around 30% 
the size of direct effects, in agreement with an estimate based on a 
polygenic score14 and within-family analyses in other populations22.

RDR, like other methods using IBD segments7,8, may underesti-
mate the heritability due to rare variants. However, any underesti-
mation due to rare variants will be less than that for GREML-SNP 

methods applied to typical genotyping arrays. By using IBD seg-
ments, RDR captures substantially more of the variance from rare 
variants, approximately 88% for variants with MAF between 1% and 
0.1%. Consequently, the underestimation of heritability by RDR 
will be small unless very rare variants, especially de novo mutations, 
explain a large fraction of the phenotypic variance. Furthermore, 
Sib-Regression captures variance from all variants other than 
de-novo mutations not shared by siblings. The finding that Sib-
Regression estimates were close to RDR estimates on average does 
not suggest substantial underestimation of heritability by RDR as a 
result of very rare variants.

Heritability estimates from Swedish twin studies were substan-
tially higher than RDR and Sib-Regression estimates for almost 
all traits. Some of the difference may be due to differences in 
heritability between our Icelandic sample and the Swedish twin 
samples. Other possible explanations are overestimation of heri-
tability by twin studies and/or very rare variants, especially de 
novo mutations, explaining a substantial fraction of the pheno-
typic variance.

The RDR method requires parents of probands to be geno-
typed. Large datasets with this property are currently rare, and 
this is the main reason that our current study was limited to the 
Icelandic population. However, our results suggest that large 
genotyped samples including close relatives are essential for 
disentangling nature and nurture. As large population samples 
become more common, large amounts of family data will inevita-
bly be collected. We therefore expect RDR and related methods to 
become more widely applied.

URLs. Educational attainment categories, http://uis.unesco.org/
en/isced-mappings/.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0178-9.
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Methods
Icelandic sample. All participating subjects donating biological samples provided 
signed informed consent, and the study was approved by the Data Protection 
Commission of Iceland and the National Bioethics Committee of Iceland. The personal 
identities associated with the phenotypes and biological samples were encrypted by a 
third-party system provided by the Icelandic Data Protection Authority.

The Icelandic samples were genotyped with Illumina microarrays as previously 
described24. The whole genomes of 2,636 Icelanders were sequenced with Illumina 
technology to a mean depth of at least 10×​ (median 20×​) (ref. 24). A total of 35.5 
million autosomal SNPs and indels were identified with the Genome Analysis 
Toolkit, version 2.3.9.

The deCODE Genealogy Database is a comprehensive database including 
information on more than 800,000 Icelandic individuals, deceased and living, 
dating back to the settlement of Iceland 1,200 years ago. The database is 
constructed from a nationwide census (which has been conducted regularly since 
the year 1700), church books, and other available information. The database is 
particularly comprehensive for the past 200 years. The database includes, when 
known, information on the parents of each individual, sex, year of birth (YOB), 
and, if applicable, year of death.

We restricted our analyses to genotyped individuals who had both genetic 
parents genotyped and all four grandparents in the deCODE Genealogy Database. 
This procedure left 54,888 individuals. A summary of sample restrictions and other 
information can be found in the Reporting Summary.

The individuals and their parents had all been phased, and segments shared 
IBD, both within and between individuals, were determined by long-range 
phasing25,26. To decrease bias due to segments being incorrectly called as IBD, we 
restricted our analyses to segments longer than 5 cM. Of note, sex-chromosomes 
were not included.

To provide a measure of ascertainment bias, we compared the number of years 
of education between the individuals with both parents genotyped and the full set 
of individuals with education data. The mean years of education for individuals 
with both parents genotyped was 15.07 compared with 13.63 for the whole sample 
with education data. This was partly because individuals with both parents 
genotyped were born later than average, and the mean level of education has 
increased over time. After YOB, YOB2, and YOB3 were regressed out, the sample 
with both parents genotyped still had 0.32 years more education on average, 
compared with a standard deviation of 3.39 years. Thus, our results were slightly 
biased toward individuals with higher socioeconomic status, which, for many 
traits, is expected to increase heritability27,28.

Trait measurements. To provide a measure of educational attainment, we used 
information on the number of years of schooling, which was available for 63,508 
individuals and originated from questionnaires administered in deCODE’s various 
disease projects and from routine assessments of elderly nursing home residents. 
Because the data have been gathered over the years for the purpose of descriptive 
demographics rather than for phenotypic use, the questions were originally not 
standardized across projects, and many of them have categorical responses. For 
this study, to make the data as consistent as possible regarding the educational-
attainment trait studied in the published meta-analysis29, we made efforts to map 
the responses to the questionnaires into the UNESCO ISCED classification (see 
URLs). In particular, the final quantitative measure used, before sex and YOB 
adjustments, ranged from a minimum of 10 years to a maximum of 20 years.

Height and BMI information, collected primarily through deCODE’s genetic 
studies on cardiovascular disease, obesity, and cancer, were available for 89,615 and 
77,285 adult individuals, respectively30,31. Approximately 20% of the information 
was self-reported.

Blood measurements were collected from three of the largest laboratories in 
Iceland (Landspítali, the National University Hospital of Iceland, Reykjavík; the 
Laboratory in Mjódd, Reykjavík; and Akureyri Hospital, the Regional Hospital in 
North Iceland, Akureyri) in addition to the Icelandic Heart Association. For many 
individuals, multiple blood samples had been taken at different time points. To aid 
in comparability with other studies that have used one time point only, we took 
only the first measurement from each individual.

Information on AAFC was extracted from the deCODE Genealogy Database. 
Age at menarche was determined from the answer to the question ‘How old were 
you when your menstruation started?’, as detailed elsewhere32.

Apart from educational attainment, traits were quantile-normalized within 
each sex. Educational attainment was not quantile-normalized, because the 
measurements fall into discrete categories of years of education. The traits were 
regressed on sex; YOB, YOB2, and YOB3; and the interactions of sex with YOB, 
YOB2, and YOB3. The residuals of this regression were then used as the phenotype, 
Y, when fitting the models described below. To ensure that our heritability 
estimates corresponded to the adult nonelderly population, we further restricted 
our analysis to individuals born between 1951 and 1995 for height, and between 
1951 and 1997 for BMI and the traits measured from blood. (Of note, for Sib-
Regression, the YOB restrictions were not applied to maximize the sample size.)

Identification of siblings. For the Sib-Regression estimator, we obtained the 
relatedness for all pairs of genotyped individuals who shared both parents in the 

genealogy. To ensure that we used only true full siblings, we clustered the pairs 
by relatedness into four clusters with k-means clustering: unrelated, half sibling, 
full sibling, and monozygotic twin. This procedure left 127,264 full-sibling pairs 
comprising 70,317 unique individuals, whose relatedness distribution had a 
mean of 0.502 and a standard deviation of 0.0382. To maximize the precision of 
the Sib-Regression estimator, we did not restrict by YOB or by the number of 
parents genotyped; thus, the sample used was different from the sample used for 
the other estimators.

Calculation of IBD relatedness matrices. To calculate R, Rpar, and Ro,par, we used 
formulae based on the genetic covariance in a population descending from a finite 
number of ancestors33 (Supplementary Note):

∑= − ∕ −
=

R K K[ ] 1
2

(IBD ) (1 )ij
k l m p

ij
kl

, ,
0 0

where K0 is the mean kinship over all pairs in the population, and IBDij
kl is the 

proportion of the maternally inherited haplotype of i shared IBD with the 
paternally inherited haplotype of j;

=
+ + + −

−
R

K K K K K
K

[ ]
4

(1 )ij
p i p j p i m j m i p j m i m j

par
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

0
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+ + + −

−
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,par
( ) ( ) ( ) ( ) 0

0

where Kim j( )  is the kinship between i and the mother of j, and so forth.

Calculation of SNP relatedness matrices. To perform RDR-SNP analysis, we 
calculated relatedness matrices from SNPs R R R( , , )o

snp
par
snp

,par
snp  that are analogous 

to the IBD relatedness matrices used in RDR (R, Rpar, Ro,par). Consider a sample of 
n individuals genotyped at l biallelic SNPs, for which the genotype is expressed as 
the copy number {0,1,2} of one of the two alleles. Let G be the ×n l[ ]  matrix of 
genotypes standardized to have a mean of zero and a variance of 1. The matrix Rsnp 
is equivalent to that used in standard GREML-SNP analysis and is calculated as 

= −R l GGTsnp 1 .
To calculate Rpar

snp and Ro,par
snp , parental genotypes must first be formed. Let Gm be 

the ×n l[ ]  matrix of genotypes of the mothers of the n individuals in the sample, 
and let Gp be the ×n l[ ]  matrix of the genotypes of the fathers. Then = +G G Gpar m p 
is the parental genotype matrix, with entries from {0,1,2,3,4}. We normalized 
the columns of Gpar to have a mean of zero and a variance of two. The variance is 
naturally twice that of the offspring genotype in an outbred population, because 
each entry is the sum of maternal and paternal genotypes. Then

= = +− −R l G G R l GG G G(2 ) ; (2 ) ( )T
o

T T
par
snp 1

par par ,par
snp 1

par par

The matrices are calculated in this way to ensure that estimates of vg , ~ve g , and 
cg e,  are properly calibrated. These equations can be derived from a random-effects 
model (Supplementary Note).

For the analysis of the real traits, we computed relatedness matrices from SNPs 
from the Illumina Framework SNP set. The Illumina Framework SNP set is a set 
of 611, 173 SNPs shared among many of the Illumina genotyping arrays used to 
genotype the Icelandic sample24. We used this set of SNPs to make our analysis 
comparable to applications of GREML-SNP to data from typical genotyping 
arrays. Before computing relatedness matrices, we removed SNPs with imputation 
information below 0.9999 and a MAF less than 1%, thus leaving 605,966 SNPs. For 
the simulated traits, we also computed relatedness matrices from only the causal 
SNPs (Supplementary Note).

Computing RDR estimates. The RDR covariance model is

σ= + + +∼Y v R v R c Rcov( ) Ig e g g e opar , ,par
2

We investigated fitting this model by least-squares regression of the off-
diagonal elements of the sample phenotypic covariance matrix on the off-diagonal 
elements of the relatedness matrices:

− ̄ − ̄ ~ + +y y y y R R R( ) ( ) [ ] [ ] [ ]i j ij ij o ijpar ,par

where yi
 is the phenotype observation for individual i, and ̄y is the sample 

phenotype mean. We excluded both parent–offspring and grandparent–grandchild 
pairs from the regression, because these pairs violate the relationship between R[ ]ij 
and R[ ]ijpar  required for removal of environmental bias from estimation of vg  (Fig. 1 
and Supplementary Note). We also investigated fitting the model by unconstrained 
restricted maximum likelihood in GCTA34, under the assumption that the trait 
follows a multivariate normal distribution:
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μ σ∼ + + +∼Y N v R v R c R( , I)g e g g e o
2

par , ,par

For the maximum-likelihood method, one can remove only individuals and all 
the pairs including that individual, not arbitrary pairs. Approximately 30% of the 
sample with both parents genotyped had an ancestor who also had both parents 
genotyped. We therefore did not exclude individuals such that no parent–offspring 
and no grandparent–grandchild pairs would be present, because doing so would 
have resulted in a large loss of sample size.

In our simulations, we found that RDR estimates from maximum-
likelihood and RDR estimates from least squares were both approximately 
unbiased, and there was no consistent advantage in bias evident from fitting the 
model by least squares after exclusion of parent–offspring and grandparent–
grandchild pairs (Supplementary Table 1). However, least-squares estimates 
were considerably less precise than those from maximum likelihood. We 
therefore used maximum likelihood without exclusion of parent–offspring 
and grandparent–grandchild pairs for all analyses in the main text. For the 
real traits, the results from least squares were consistent with the results from 
maximum likelihood, but the least-squares estimates were considerably less 
precise (Supplementary Table 5).

To obtain RDR-SNP estimates, we fitted the following model by restricted 
maximum likelihood in GCTA:

μ σ∼ + + +∼Y N v R v R c R( , I)g e g g e o
snp

par
snp

, ,par
snp 2

Computing Kinship and Kinship F.E. estimates. To obtain heritability estimates 
from the Kinship method, we fitted the following model for a vector of phenotype 
observations Y:

σ∼ +Y N X b v R( , I)gkin
2

For the Kinship F.E. model, we added a variance component that modeled 
shared family environment:

σ∼ + +Y N X b v R v C( , I)g ckin
2

where =C[ ] 1ij  if i and j shared a mother according to the deCODE Genealogy 
Database, or =C[ ] 0ij  otherwise. For all of the simulated traits other than the 
regional trait, Xkin was a constant. For the regional trait, it also included the top 20 
genetic principal components. In the real-trait analysis, Xkin included the top 20 
genetic principal components. For both the Kinship and Kinship F.E. methods, we 
estimated model parameters acccording to unconstrained restricted maximum 
likelihood in GCTA34.

Computing RELT-SNP estimates. To compute RELT-SNP estimates, we regressed 
off-diagonal elements of the phenotypic covariance matrix onto elements of Rsnp, 
excluding elements of Rsnp greater than 0.05. Let X be a matrix whose first column 
has every entry equal to one, and whose other columns are covariates and/or 
positions on genetic principal components. Let �b be the least-squares estimate of 
the vector of regression coefficients of the phenotype on X. Then we formed the 
sample phenotypic covariance matrix as = − −� �Y YS X X( b) ( b)

T
, where Y is the 

vector of phenotype observations. Estimates of vg  were computed by regressing 
off-diagonal elements of S, S[ ]ij, on off-diagonal elements of Rsnp, R[ ]ij

snp , excluding 
pairs for which > .R[ ] 0 05ij

snp .
We describe a computational procedure for computing RELT-SNP estimates 

and their standard errors in the Supplementary Note. This procedure builds on 
previous work expressing the Haseman–Elston regression as a quadratic form35, 
which takes into account the dependence between elements of S. We found our 
standard-error estimates to be accurate in simulations, with a mean error of 4.3% 
across the simulated traits (Supplementary Table 9). The RELT-SNP estimates and 
standard errors were computed with custom Python code.

For the regional trait, RELT-SNP was upwardly biased ( = .h 45 7%2 , .0 23% 
s.e.) but became approximately unbiased ( = .h 39 3%2 , .0 10% s.e.) when the trait 
was adjusted for 20 genetic principal components. However, we found that 
adjustment for 20 genetic principal components resulted in a downward bias 
for the additive trait ( = .h 38 7%2 , .0 09% s.e.). We therefore decided to take an 
approach in which we adjusted for principal components only for those traits that 
exhibited substantial stratification. For the results in Table 2, we adjusted for 20 
principal components only for the traits for which the variance explained by the 
top 20 principal components exceeded 1%: height, age at first child in men and 
women, and educational attainment. We report results with and without control for 
principal components for all traits in Supplementary Table 8. The choice of 1% was 
somewhat arbitrary. Arbitrary decisions about how many principal components 
to control for are a disadvantage of the Kinship, GREML-SNP, and RELT-SNP 
methods. RDR and RDR-SNP, in contrast, do not require such arbitrary decisions, 
because they separate genetic and environmental effects in a principled way.

Computing Sib-Regression estimates. To obtain Sib-Regression estimates5, we fit 
the regression model

− ~y y R( ) [ ]i j ij
2

for all i,j such that i and j are full siblings. We fit the regression model by least 
squares with custom R code. The estimate of vg  is then minus one-half of the 
estimated regression coefficient. We compared estimated standard errors with the 
approximate formula given in the original Sib-Regression paper5 and estimating 
standard errors by treating Sib-Regression as a standard univariate linear regression 
with uncorrelated observations. For the additive simulated trait, both methods 
gave almost exactly the same estimated standard error, which underestimated 
the standard error by approximately 9%. We used standard errors estimated from 
treating Sib-Regression as a standard univariate linear regression with uncorrelated 
observations for all other results.

Simulations with deCODE data. For all traits other than the rare-SNPs trait, 
we used imputed genotypes at 611, 173 SNPs from the Illumina Framework SNP 
set (described above). We filtered the SNPs so that the minimum imputation 
information was 0.9999, removing approximately half the SNPs. From the 
remaining SNPs passing the filter, we randomly sampled 10,000 SNPs to use 
as the causal SNPs in our simulations. In the 10,000 selected SNPs, the median 
imputation information was 1.0000, the minimum MAF was 0.52%, and the 
median MAF was 22.8%. For the rare-SNPs trait, we randomly sampled SNPs 
from all imputed SNPs with MAF between 1% and 0.1% and with imputation 
information at least 0.9999 and P value for Hardy–Weinberg deviation  
>​0.05. We sampled 100 such SNPs from each chromosome, thus resulting  
in 2,200 SNPs in total.

For each type of trait, we simulated 500 independent replicates. We briefly 
describe the simulation of the direct, additive genetic component of each trait, 
which explained 40% of the phenotypic variance. Apart from for the rare-SNPs 
trait, we standardized genotypes so that each SNP’s genotype vector had a 
sample mean of zero and a sample variance of one. Let G represent the matrix of 
standardized genotypes at the 10,000 causal SNPs. We sampled additive effects 
of SNPs from a normal distribution. Let β ~ N I(0, )  represent the vector of 
SNP effects. The additive genetic component, A, was calculated as β=A G  and 
then scaled to explain 40% of the phenotypic variance. Details on simulation of 
environmental components are provided in the Supplementary Note.

Simulations in the UK Biobank. To select causal SNPs for phenotype simulation, 
for each chromosome we randomly sampled 1,500 SNPs, then removed those 
with MAF <​5% or >​0.5% missing genotypes. This procedure yielded a set of 
11,771 SNPs. We mean-imputed missing genotypes for both parents and offspring. 
We simulated 10,000 independent replications of each trait. Let =l 11, 771. We 
standardized offspring genotypes so that the genotypes at each SNP had a mean of 
zero and a variance of 1. Let G be the matrix of standardized offspring genotypes. 
Here, we describe simulation of the direct, additive genetic component of the 
traits. Further detail can be found in the Supplementary Note. For each trait, we 
simulated a normally distributed vector of effects for the l SNPs: β ~ . −N l I(0, 0 2 )1 . 
The additive genetic component of the trait, A, was then calculated as β=A G .

Selection of estimates from twin studies. The Swedish Twin Registry19 is a large 
sample of twins from a population with similar cultural and genetic composition 
to that of Iceland, thus providing the most precise and valid comparison possible 
based on published data23,36–40. For BMI and traits measured from blood, unlike our 
estimates, the Swedish Twin Registry estimates do not exclude older individuals. 
This difference is unlikely to account for the higher estimates in the Swedish Twin 
Registry, because twin correlations and heritability estimates are generally lower in 
the older population2.

We took the heritability estimate from the additive-common-environment 
(ACE) model2,3 when provided. ACE estimates were not provided for the blood 
lipid traits, but monozygotic- and dizygotic-twin correlations were provided39. We 
used these values to obtain the moment-based estimate of the heritability under the 
ACE model with the formula −r r2( )MZ DZ , where rMZ  is the phenotypic correlation 
for monozygotic twins, and rDZ  is the phenotypic correlation for dizygotic twins. 
We took the weighted average of the same-sex and opposite-sex dizygotic-twin 
correlations to estimate rDZ . For creatinine, because the ACE estimate was not 
provided, and neither were the twin correlations, we took the published heritability 
estimate from the additive-dominance-environment model. The studies and 
methods used are summarized in Supplementary Table 6. For height, because 
heritability estimates were provided for males and females separately, we took 
the average estimate. The standard error was not provided. Height and weight 
estimates were based on self-reported data, whereas our estimates were based on 
approximately 80% measured and 20% self-reported data. This difference would 
be expected to increase our heritability estimates for height and BMI relative to 
the twin estimates as a result of decreased measurement error. For education, we 
used a meta-analysis of twin studies in Scandinavian countries, including Sweden, 
to provide a more precise estimate23. We were unable to find published estimates 
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based on the Swedish Twin Registry for the hemoglobin traits and for age at first 
child, so we excluded them from the comparison.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. Code used for estimating heritability by RELT-SNP and 
Sib-Regression is freely available under an MIT license at https://github.com/
AlexTISYoung/RDR/.

Data availability. The authors declare that the Icelandic data supporting the findings 
of this study are available within the article, its supplementary information files and 
upon reasonable request. Applications for access to the UK Biobank data can be 
made on the UK Biobank website: http://www.ukbiobank.ac.uk/register-apply/.
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