
 
Supplementary Figure 1. Equilibrium phenotypic variance components: theory vs. observa;ons. We simulated 16 phenotypes 
with differing indirect gene8c effect (IGE) parameters and strengths of assorta8ve ma8ng (Methods). a) We compare the 
predicted infla8on of gene8c variance due to assorta8ve ma8ng at equilibrium, 1/(1 − 𝑟!), to the observed infla8on, i.e. the 
gene8c variance aFer 20 genera8ons of ma8ng compared to the gene8c variance in the first genera8on produced by random 
ma8ng. b) Comparisons of predicted infla8on of variance due to parental IGEs, (1 + 𝑟")/(1 − 𝑟"), to the observed infla8on aFer 
20 genera8ons of ma8ng. c) We compare the predicted phenotypic variance component due to covariance between direct 

gene8c effect (DGE) and IGE components,  (𝑟!"
# + 𝑟!"

$ )*
%&!~#&#

(()*$)(()*%)
, to the observed variance component. d) For phenotypes 

with non-zero correla8on DGEs and IGEs, we compare the predicted infla8on of the variance component due to covariance 

between DGE and IGE components, 
*%$
& ,*%$

'

*%$
& )*%$

' , to the observed infla8on of this variance component aFer 20 genera8ons of ma8ng.  
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Supplementary Figure 2. Simula;on results for a direct gene;c effect (DGE) PGI with noise level 10. Across 16 simulated 
phenotypes (Methods), we computed PGIs using weights equal to the true direct gene8c effects plus a noise term equal to 10x 
the variance to the true DGEs. This resulted in a DGE PGI that explained approximately 9% of the heritability in a random-ma8ng 
popula8on (Supplementary Table 4). We performed two-genera8on PGI analysis (Methods and Figure 3) in order to es8mate a) 
𝑟!, the correla8on between parents’ true DGE components (that explain all the heritability); b) ℎeq% , the equilibrium heritability; c) 
𝛼!, the indirect gene8c effect of the true DGE PGI;  and d) the propor8on of phenotypic variance contributed by the IGE 
component that is correlated with the DGE component, 𝑣":!. Ver8cal and horizontal error bars indicate 95% confidence intervals. 
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Supplementary Note for: Estimation of indirect genetic
effects and heritability under assortative mating

Correspondence to: alextisyoung@gmail.com

1 Phenotype model

We consider a model with direct genetic effects (DGEs) and indirect genetic effects (IGEs) from
parents:

Yij = ∆ij + ηp(i) + ηm(i) + ϵij

where Yij is the phenotype of individual i in family j; ϵij is the residual that is uncorrelated
with ∆ij, ηp(i), ηm(i) and has variance σ2

ϵ ;

∆ij =
L∑
l=1

δl (gijl − 2fl) ; ηp(i) =
L∑
l=1

ηl
(
gp(i)l − 2fl

)
; ηm(i) =

L∑
l=1

ηl
(
gm(i)l − 2fl

)
;

where gijl is the genotype of individual j in family i at locus l; gp(i)l is the genotype of the father
in family i at locus l; gm(i)l is the genotype of the mother in family i at locus l; and fl is the
allele frequency at locus l such that E [gijl] = 2fl (assumed to be constant across generations);
the DGE of locus l is given by δl; and the paternal and maternal IGEs at locus l are given by
ηl. We assume that paternal and maternal IGEs are equal, but we relate the results for this
model to a model that allows for different paternal and maternal IGEs later.

In a random-mating population, the phenotypic variance can be decomposed as in the RDR
method for estimating heritability [14] :

Var (Yij) = Var (∆ij) + Var
(
ηp(i) + ηm(i)

)
+ 2Cov

(
∆ij, ηp(i) + ηm(i)

)
+ σ2

ϵ ;

where

vg = Var (∆ij) = 2
L∑
l=1

δ2l fl (1− fl)

ve∼g = Var
(
ηp(i) + ηm(i)

)
= 4

L∑
l=1

η2l fl (1− fl) ;

cg,e = 2Cov
(
∆ij, ηp(i) + ηm(i)

)
= 4

L∑
l=1

ηlδlfl (1− fl)
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so that

Var (Yij) = vg + ve∼g + cg,e + σ2
ϵ .

Note that for this we have made the further assumption that the L causal loci segregate
independently so are uncorrelated in a random-mating population.

2 Assortative Mating Model

We consider assortative mating that has reached an equilibrium. From Chapter 4 of Crow and
Kimura[1], the correlations between alleles at equilibrium are given in Figure S1.

mother’s alleles

o�spring alleles

paternal 
meiosis

maternal 
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Fig. S1: Correlations between alleles in parents and offspring. Here, double-headed arrows
indicate correlations between alleles. Assortative mating induces correlations between alleles
in the mother and alleles in the father. At equilibrium, the correlations between alleles are as
shown for two loci l and l′[1]

We aim to express the equilibrium phenotypic variance in terms of the random-mating
variance components (Equation 1) and the equilibrium correlations between the parents’ direct
and indirect components (Figure 1).

3 Equilibrium variance decomposition

We generalise the approach taken in Section 4.8 of Crow and Kimura[1] to apply to a trait
determined by both DGEs and IGEs from parents.
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3.1 Equilibrium variance due to direct genetic effects

We have that:

Var(∆ij) = 2
L∑
l=1

δ2l fl(1− fl)[1 +mll] + 4
∑
l ̸=l′

δlδl′
√
fl(1− fl)fl′(1− fl′)mll′ . (1)

We relate this to Cov(∆m(i),∆p(i)) = rδVar(∆ij), where rδ = Corr(∆m(i),∆p(i)) (Figure 1). We
have that

Cov(∆m(i),∆p(i)) = 4
∑
l,l′

δlδl′
√

fl(1− fl)fl′(1− fl′)mll′ . (2)

We define the effective number of independently segregating loci of equal contribution to the
variance due to DGEs, Lδ:

Lδ =

∑
l,l′ δlδl′

√
fl(1− fl)fl′(1− fl′)mll′∑L

l=1 fl(1− fl)δ2l mll

. (3)

Note that if all loci had equal DGEs and equal allele frequencies, then at equilibrium mll′ =
mll = r ∀ l, l′, and therefore Lδ = L. See Crow and Kimura section 4.7 for further details
on the model with L independently segregating loci with equal frequency and equal effects[1].
If many common genome-wide variants contribute to the variance explained by direct genetic
effects, Lδ will be large. This allows us to express Var(∆ij) as

Var(∆ij) = vg + rδVar(∆ij)− rδ
Var(∆ij)

2Lδ

. (4)

Let the equilibrium variance Var(∆ij) be veqg , then

veqg =
vg

1− (1− 1
2Lδ

)rδ
≈ vg

1− rδ
for large Lδ. (5)

3.2 Equilibrium variance due to parental indirect genetic effects

As above in Subsection 3.1, it can be shown that at equilibrium

Var(ηp(i)) = Var(ηm(i)) =
ve∼g

2[1− (1− 1
2Lη

)rη]
, (6)

where rη = Corr(ηp(i), ηm(i)) and

Lη =

∑
l,l′ ηlηl′

√
fl(1− fl)fl′(1− fl′)mll′∑L

l=1 fl(1− fl)η2l mll

(7)
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is the effective number of independently segregating loci of equal contribution to the variance
due to parental IGEs.

Let veqe∼g be the equilibrium variance due to parental IGEs. We have that

veqe∼g =
ve∼g

1− (1− 1
2Lη

)rη
+ 2Cov(ηp(i), ηm(i)). (8)

We further have that
Cov(ηp(i), ηm(i)) = rη

ve∼g

2[1− (1− 1
2Lη

)rη]
. (9)

Therefore,

veqe∼g =
1 + rη

1− (1− 1
2Lη

)rη
ve∼g. (10)

3.3 Equilibrium variance due to covariance between direct and in-
direct genetic effects

We compute the phenotypic variance due covariance between direct and indirect genetic effects:

ceqg,e = 2Cov(∆ij, ηp(i) + ηm(i)); (11)

= 4Cov(∆ij, ηp(i)). (12)

To compute Cov(∆ij, ηp(i)), we use the fact that ∆ij⊥ηp(i)|Gpar(i), and E[∆ij|Gpar(i)] = (∆p(i) +
∆m(i))/2. Therefore,

Cov(∆ij, ηp(i)) =
1

2

(
Cov(∆p(i), ηp(i)) + Cov(∆p(i), ηm(i))

)
; (13)

=
rcδη + rτδη

2

√
vgve∼g

2[1− (1− 1/(2Lδ))rδ][1− (1− 1/(2Lη))rη]
. (14)

Therefore,

ceqg,e = (rcδη + rτδη)

√
2vgve∼g

[1− (1− 1/(2Lδ))rδ][1− (1− 1/(2Lη))rη]
. (15)

Letting Lδ → ∞ and Lη → ∞, we obtain

ceqg,e = (rcδη + rτδη)

√
2vgve∼g

(1− rδ)(1− rη)
. (16)

4



3.3.1 Relationship to random-mating variance component

We now relate the ceqg,e to cg,e assuming that cg,e ̸= 0.

Cov(∆ij, ηp(i)) =
L∑
l=1

δlηlfl(1− fl)[1 + 3mll] + 4
∑
l ̸=l′

δlηl′
√

fl(1− fl)fl′(1− fl′)mll′ . (17)

This can be related to

Cov(∆m(i), ηp(i)) = 4
∑
l,l′

δlηl′
√
fl(1− fl)fl′(1− fl′)mll′ . (18)

We define

Lδη =

∑
l,l′ δlηl′

√
fl(1− fl)fl′(1− fl′)mll′∑L

l=1 fl(1− fl)δlηlmll

, (19)

the effective number of independent loci of equal contribution to the variance due to covariance
between DGEs and IGEs. Note that if all loci had equal frequency and equal DGE and IGE,
then Lδη = L. Assuming that cg,e ̸= 0, we have that

Cov(∆ij, ηp(i)) =
cg,e
4

+

(
1− 1

4Lδη

)
Cov(∆m(i), ηp(i)). (20)

From above, we have that

Cov(∆ij, ηp(i)) =
rcδη + rτδη

2

√
Var(∆ij)Var(ηp(i)); (21)

and

Cov(∆m(i), ηp(i)) = rτδη

√
Var(∆ij)Var(ηp(i)). (22)

Therefore,

Cov(∆m(i), ηp(i)) =
2rτδη

rcδη + rτδη
Cov(∆ij, ηp(i)), (23)

and therefore

Cov(∆ij, ηp(i)) =
cg,e
4

+

(
1− 1

4Lδη

)
2rτδη

rcδη + rτδη
Cov(∆ij, ηp(i)). (24)

After some rearrangement, it can be shown that

Cov(∆ij, ηp(i)) =
rcδη + rτδη

rcδη −
(
1− 1

2Lδη

)
rτδη

cg,e
4

; (25)

and therefore

ceqg,e =
rcδη + rτδη

rcδη −
(
1− 1

2Lδη

)
rτδη

cg,e. (26)
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3.3.2 Expression in terms of direct and indirect genetic effect correlation

We now derive the relationship between rcδη and rτδη to give an alternative expression for ceqg,e.
Recall that (Figure 1) rcδη is the correlation between direct and indirect effect components within
an individual:

rcδη =
Cov

(
∆p(i), ηp(i)

)√
Var

(
∆p(i)

)
Var

(
ηp(i)

)
We now define the correlation between DGE and IGE components in an individual under
random mating to be r0δη, which can be expressed in terms of the random-mating variance
components:

r0δη =
cg,e√
2vgve∼g

.

If we further assume equal allele frequencies, i.e. fl = f ∀ l, then this is simply the genome-wide
correlation of the direct and indirect genetic effects:

r0δη =

∑L
l=1 δlηl√(∑L

l=1 δ
2
l

)(∑L
l=1 η

2
l

) .
Without assuming equal allele frequencies, it is the genome-wide correlation of the direct and
indirect genetic effects for genotypes standardized to have variance 1 .

Now we compute rcδη at equilibrium. First, we compute

Cov
(
∆p(i), ηp(i)

)
=

L∑
l=1

δlηl2fl (1− fl) [1 +mll] + 4
∑
l ̸=l′

δlηl′
√

fl (1− fl) fl′ (1− fl′)mll′ .

Following a similar procedure to above, we obtain:

Cov
(
∆p(i), ηp(i)

)
=

cg,e
2

+

(
1− 1

2Lδη

)
Cov

(
∆m(i), ηp(i)

)
Now we obtain the correlation at equilibrium:

rcδη =
cg,e

2
√

Var
(
∆p(i)

)
Var

(
ηp(i)

) + (1− 1

2Lδη

)
Cov

(
∆m(i), ηp(i)

)√
Var

(
∆p(i)

)
Var

(
ηp(i)

)
We can then express this in terms of rτδη = Corr

(
∆m(i), ηp(i)

)
, rδ, rη, and the random-mating

variance components. Letting Lδη → ∞,

rcδη =
cg,e/2√
vgve∼g

2(1−rδ)(1−rη)

+ rτδη

6



This can then be further simplified by expression in terms of r0δη :

rcδη = r0δη

√
(1− rδ) (1− rη) + rτδη

We can then substitute this into the expression for ceqg,e derived above:

ceqg,e =

(
1 +

2√
(1− rδ) (1− rη)

rτδη
r0δη

)
cg,e.

3.4 Different maternal and paternal indirect genetic effects

If we allow the maternal and paternal indirect effects to be different, i.e.

ηp(i) =
L∑
l=1

ηpl
(
gp(i)l − 2fl

)
; ηm(i) =

L∑
l=1

ηml

(
gm(i)l − 2fl

)
,

then we can write the phenotype model as (see[2])

Yij = ∆ij + ηp(i) + ηm(i) + λp(i) − λm(i) + ϵij

which is the same as in 1, except

ηl = (ηpl + ηml) /2;λp(i) =
L∑
l=1

λlgp(i)l;λm(i) =
L∑
l=1

λlgm(i)l;λl = (ηpl − ηml) /2.

Ignoring the term involving the differences between paternal and maternal indirect effects,
this model is equivalent to the model considered above with ηl replaced by (ηpl + ηml) /2, i.e.
the average of paternal and maternal indirect effects.

Now we consider the statistical relationship between the difference term and the other non-
residual terms. We first consider the covariance between the DGE component and the difference
term. As the offspring genotype is equally related to maternal and paternal genotypes, i.e. by
symmetry,

Cov
(
∆ij, λp(i) − λm(i)

)
= 0.

We now consider the covariance between the sum and difference terms for parental IGEs.
Since Var

(
gp(i)l

)
= Var

(
gm(i)l

)
,

Cov
(
gp(i)l + gm(i)l, gp(i)l − gm(i)l

)
= 0.

For distinct loci, we have that

Cov
(
gp(i)l + gm(i)l, gp(i)l′ − gm(i)l′

)
= 2 (4mll′ − 4mll′) = 0.

7



Therefore,

Cov
(
ηp(i) + ηm(i), λp(i) − λm(i)

)
= 0.

This shows that the difference component is uncorrelated with the DGE and average parental
IGE components. Therefore, for many applications, the difference term can be subsumed into
the residual and the variance decomposition for the model with equal paternal and maternal
indirect effects used — along with the interpretation that the parental IGE is the average
parental IGE.

However, for some applications, such as calculating covariances between relatives, the dif-
ference term remains important. We therefore give a variance decomposition at equilibrium
including the difference term. First, we give the random-mating variance of λp(i) − λm(i) :

vλ = Var
(
λp(i) − λm(i)

)
=

L∑
l=1

λ2
l 4fl (1− fl) .

Now we consider that at equilibrium, Corr
(
λp(i), λm(i)

)
= rλ. Let veqlp be the equilibrium

variance of λp(i), then the at equilibrium we have

Var
(
λp(i) − λm(i)

)
= 2 (1− rλ) v

eq
lp .

Following a similar procedure to above for the other variance components, it can be shown
that

veqlp =
vλ

2 (1− (1− 2/Lλ) rλ)
,

where

Lλ =

∑
l,l′ λlλl′

√
fl (1− fl) fl′ (1− fl′)4mll′∑L

l=1 λ
2
l fl (1− fl)mll

Therefore, at equilibrium

Var
(
λp(i) − λm(i)

)
=

1− rλ
1− (1− 2/Lλ) rλ

vλ.

In limit as Lλ → ∞,

Var
(
λp(i) − λm(i)

)
= vλ.

This shows that assortative mating makes approximately no difference in the variance due to
differences between paternal and maternal IGEs when there are many variants genome-wide
contributing to differences between maternal and paternal IGE components. We can thereby

8



generalize the equilibrium variance decomposition to include the variance component due to
differences between maternal and paternal IGEs:

Var (Yij) =
vg

1− rδ
+

1 + rη
1− rη

ve∼g + (rcδη + rτδη)

√
2vgve∼g

(1− rδ)(1− rη)
+ vλ + σ2

ϵ .

3.5 Primary phenotypic assortment

Previously, we did not consider the mechanism of assortment: just that we had reached an
equilibrium where the correlations between alleles are constant across generations. Here we
consider what the equilibrium correlation between parents’ direct effect components would
be under a model of assortative mating due to matching on the phenotype, called primary
phenotypic assortment. The key assumption is that the paternal DGE and IGE components
are conditionally independent of the maternal DGE and IGE components given the maternal
and paternal phenotypes:

∆p(i), ηp(i) ⊥ ∆m(i), ηm(i) | Ym(i), Yp(i)

Under this assumption and a further assumption that E
[
∆p(i) | Yp(i)

]
is a linear function of Yp(i)

(see Nagylaki 1982[3] for a discussion of the conditions under which this assumption holds), we
have that

rδ =
Cov

(
∆p(i),∆m(i)

)
veqg

;

=
Cov

(
E
[
∆p(i) | Yp(i)

]
,E
[
∆m(i) | Ym(i)

])
veqg

;

=
Cov

(
∆p(i), Yp(i)

)2
veqy veqg

rY ;

where veqy is the equilibrium phenotypic variance. It is trivial to derive that Cov
(
∆p(i), Yp(i)

)
=

veqg + ceqg,e/2, and therefore, after some rearrangement,

rδ = h2
eqrY

[
1 +

ceqg,e
veqg

(
1 +

ceqg,e
4veqg

)]
,

We therefore see that parental IGEs, when correlated with DGEs, can inflate the equilibrium
correlation between DGE components of parents over what would be expected from DGEs alone.
The same logic implies that the other correlations in Figure 1, and therefore the equilibrium
phenotypic variance will be further inflated by AM when DGEs and IGEs are correlated.

4 Estimating heritability using realized relatedness

Here, we examine heritability estimation using realized relatedness between siblings (‘sib-
regression’), as first proposed in 2006 by Visscher et al.[4]. Let Rijk be the realized relatedness
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between sibling j and sibling k in family i. While the expected relatedness between siblings
is given by the pedigree, the realized relatedness varies around the expectation due to ran-
dom segregations during meiosis in the parents, leading to variation in the fractions of the
genome the siblings share identical-by-descent (IBD). We first derive the phenotypic covariance
between siblings in terms of their realized relatedness, then we derive the bias due to AM in
sib-regression estimates of heritability.

4.1 Equilibrium covariance between siblings

We show how to express the equilibrium phenotypic covariance between siblings in terms of
their realized relatedness and the equilibrium decomposition of the phenotypic variance. The
covariance between the DGE components of a sibling pair is:

Cov (∆i1,∆i2) =
L∑
l=1

δ2l Cov (gi1l, gi2l) + 4
∑
l ̸=l′

δlδl′
√
fl (1− fl) fl′ (1− fl′)mll′

The covariance between siblings’ genotypes conditional on the IBD state at the locus is:

Cov (gi1l, gi2l) =


4mllfl (1− fl) , IBD0

(1 + 3mll) fl (1− fl) , IBD1

2 (1 +mll) fl (1− fl) , IBD2

Let P0, P1, P2 be the proportion of the genome shared in IBD states 0, 1, and 2, respectively.
Therefore, assuming causal variants are located at random with respect to IBD sharing,

Cov (gi1l, gi2l) = fl (1− fl) [P1 + 2P2 +mll (4P0 + 3P1 + 2P2)] .

The realised relatedness between the siblings is Rijk = (P1 + 2P2) /2. Therefore,

Cov (gi1l, gi2l) = 2fl (1− fl) [Rijk +mll (2P0 + (3/2)P1 + P2)] .

Since P0 + P1 + P2 = 1, 2P0 + (3/2)P1 + P2 = 2−Rijk. Therefore,

Cov (gi1l, gi2l) = 2fl (1− fl) [Rijk + (2−Rijk)mll] .

This gives the covariance between siblings’ DGE components as

Cov (∆i1,∆i2) = vgRijk+2(2−Rijk)
L∑
l=1

δ2l fl (1− fl)mll+4
∑
l ̸=l′

δlδl′
√

fl (1− fl) fl′ (1− fl′)mll′ .

We now relate this to Cov
(
∆m(i),∆p(i)

)
= rδv

eq
g :

Cov (∆i1,∆i2) = vgRijk + 2(2−Rijk)
L∑
l=1

δ2l fl (1− fl)mll + rδv
eq
g −

L∑
l=1

δ2l fl (1− fl)mll.

10



Now expressing in terms of Lδ :

Cov (∆i1,∆i2) = vgRijk +

(
1 +

3− 2Rijk

4Lδ

)
rδv

eq
g .

Now letting Lδ → ∞,
Cov (∆i1,∆i2) → vgRijk + rδv

eq
g .

We therefore see that the realized relatedness does not track the assortative mating induced
inflation of the variance due to direct effects. Setting Rijk = 0.5, the expected relatedness given
the pedigree, we obtain

Cov (∆i1,∆i2) =
1 + rδ

2
veqg ,

the same as based on pedigree alone. This gives the phenotypic covariance between siblings as

Cov (Yi1, Yi2) = vgRijk + rδv
eq
g + veqe∼g + ceqg,e + Cov (ϵi1, ϵi2) .

Allowing for finite Lδ, we obtain

Cov (Yij, Yik) =

(
1− rδ

2Lδ − (2Lδ − 1) rδ

)
vgRijk + rδv

eq
g + veqe∼g + ceqg,e + Cov (ϵij, ϵik)

4.2 Estimating heritability by sib-regression

Heritability is estimated by the slope of the regression of (Yij − µy) (Yik − µy) /v
eq
y onto Rijk

across sibling pairs[4, 5], where µy is the phenotypic mean and veqy is the equilibrium phenotypic
variance. Since

E
[
(Yij − µy) (Yik − µy) /v

eq
y | Rijk

]
=
(
rδv

eq
g + veqe∼g + ceqg,e + E[ϵijϵik]

)
/veqy +(

1− rδ
2Lδ − (2Lδ − 1) rδ

)
vg
veqy

Rijk.

Assuming that ϵijϵik is uncorrelated with Rijk across sibling pairs (which is violated when there
are indirect genetic effects between siblings[5]), this implies that performing the regression
across siblings gives as slope(

1− rδ
2Lδ − (2Lδ − 1) rδ

)
h2
f → h2

f =
vg
veqy

as Lδ → ∞

i.e. the random mating variance of the DGE component divided by the equilibrium phenotypic
variance. This is smaller than the equilibrium heritability, h2

eq, by a factor of vg/v
eq
g = (1− rδ).

Although unlikely to be relevant for complex traits in humans, the above result implies that
there would be a further downward bias when there is AM for a phenotype affected by only a

11



small (effective) number of loci. For example, if Lδ = 1, as for a phenotype affected by a single
variant, then the heritability estimate would be(

1− rδ
2− rδ

)
h2
f ,

which approaches zero as rδ approaches 1.
The intercept is

rδh
2
eq +

(
veqe∼g + ceqg,e + E[ϵijϵik]

)
/veqy , (27)

where the rδh
2
eq term captures the increased correlation between siblings’ DGE components due

to AM, and the remaining terms capture variance explained by environmental factors shared
between siblings.

This result (in the limit as Lδ → ∞) agrees with the hypothesis put forward in Kemper et
al.[10], which argued that sib-regression estimates the random mating genetic variance divided
by the phenotypic variance in the present generation, which is h2

f at equilibrium. Kemper et
al. supported their argument through a theoretical derivation and simulations of one gener-
ation of assortative mating. We show here that their theoretical argument was incorrect. In
Supplementary Note Section 3.2 of Kemper et al. (pages 60-61 of the supplement) they use the
following result to argue that sib-regression estimates h2

f :

E[δi1δi2|Rijk] = vgRijk, (28)

which is stated without proof. However, as we prove above (Equation 4.1),

E[δi1δi2|Rijk] = vgRijk +

(
1 +

3− 2Rijk

4Lδ

)
rδv

eq
g → vgRijk + rδv

eq
g as Lδ → ∞. (29)

However, using the incorrect result E[δi1δi2|Rijk] = vgRijk in their derivation still gives the
correct slope for sib-regression because the the missing rδv

eq
g term is uncorrelated with Rijk

across sibling pairs. The result they give for the slope in the section is also missing a rδv
eq
g term

since they ignore the inflation of genetic covariance between siblings due to AM when giving
the phenotypic covariance between siblings.

5 Polygenic index analysis under random-mating

Here we derive the expected regression coefficients from two-generation PGI analysis under
random-mating in terms of the weight vector of the PGI. Let

PGIij =
1√
v

L∑
l=1

wl(gijl − 2fl); PGIpar(i) =
1√
v

L∑
l=1

wl(gp(i) + gm(i) − 4fl); . (30)

12



where

v =
L∑
l=1

w2
l 2fl(1− fl). (31)

We consider performing the regression defined by:

Yij = δPGIPGIij + αPGIPGIpar(i) + ϵij. (32)

Let

Xij =

[
PGIij

PGIpar(i)

]
.

Then we have that, under random-mating,

Var (Xij) =

[
1 1
1 2

]
;

and

Var (Xij)
−1 =

[
2 −1
−1 1

]
.

We also have that

Cov (Xij, Yij) =
1√
v

[ ∑L
l=1 ωlδl2fl (1− fl) +

∑L
l=1 ωlηl2fl (1− fl)∑L

l=1 ωlδl2fl (1− fl) +
∑L

l=1 ωlηl4fl (1− fl)

]
.

Therefore, [
δPGI

αPGI

]
= Var (Xij)

−1Cov (Xij, Yij) =
1√
v

[ ∑L
l=1 ωlδl2fl (1− fl)∑L
l=1 ωlηl2fl (1− fl)

]
.

Under random-mating, we also have that

βPGI =
Cov(Yij,PGIij)

Var(PGIij)
= δPGI + αPGI. (33)

6 Direct genetic effect PGI at equilibrium

Here we derive the expected regression coefficients from two-generation PGI analysis of the true
DGE PGI under assortative mating at equilibrium. This is defined by the following regression:

Yij = δδ∆ij + αδ∆par(i) + ϵij; (34)

where (Equation 1 and Figure 1)

∆ij =
L∑
l=1

δl(gijl − 2fl); ∆par(i) =
L∑
l=1

δl(gp(i) + gm(i) − 4fl) = ∆p(i) +∆m(i). (35)
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Let

Xij =

[
∆ij

∆par(i)

]
.

Then we have that

Var (Xij) = veqg

[
1 1 + rδ

1 + rδ 2 (1 + rδ)

]
;

and

Var (Xij)
−1 =

1

veqg (1− r2δ)

[
2 (1 + rδ) − (1 + rδ)
− (1 + rδ) 1

]
. (36)

We also have that

Cov (Xij, Yij) =

[
veqg + ceqg,e/2

(1 + rδ) v
eq
g + Cov

(
∆par(i), ηp(i) + ηm(i)

) ] ,
where we have used the fact that Cov

(
∆ij, ηp(i) + ηm(i)

)
= ceqg,e/2. We can again use this to

compute Cov
(
∆par(i), ηp(i) + ηm(i)

)
. Because ∆ij ⊥ ηp(i), ηm(i) | Gpar(i) and E

[
∆ij | Gpar(i)

]
=

∆par(i)/2,
Cov

(
∆ij, ηp(i) + ηm(i)

)
= Cov

(
∆par(i)/2, ηp(i) + ηm(i)

)
;

⇒ Cov
(
∆par(i), ηp(i) + ηm(i)

)
= ceqg,e.

Therefore,

Cov (Xij, Yij) =

[
veqg + ceqg,e/2

(1 + rδ) v
eq
g + ceqg,e

]
;

and therefore [
δδ
αδ

]
= Var (Xij)

−1Cov (Xij, Yij) =

[
1
ceqg,e

2(1+rδ)v
eq
g

]
.

6.1 Variance explained by parent and offspring DGE PGIs

We now compute the phenotypic variance explained the regression of parent and offspring DGE
PGIs (Equation 34):

Var(Yij) = Var(∆ij) + α2
δVar(∆par(i)) + 2αδCov(∆ij,∆par(i)) + σ2

ϵ (37)

= veqg [1 + 2α2
δ(1 + rδ) + 2αδ(1 + rδ)] + σ2

ϵ (38)

= veqg [1 + 2(1 + rδ)αδ(1 + αδ)] + σ2
ϵ . (39)

Therefore, the fraction of phenotypic variance explained by the regression is:

Var(∆ij + αδ∆par(i))

veqy
= h2

eq[1 + 2(1 + rδ)αδ(1 + αδ)]. (40)

The increase in variance explained compared to if there were no IGEs (i.e. αδ = 0) is

vη:δ
def
= h2

eq[1 + 2(1 + rδ)αδ(1 + αδ)]− h2
eq = 2(1 + rδ)αδ(1 + αδ)h

2
eq. (41)
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7 Incomplete direct genetic effect PGI

Here we derive results for two-generation analysis of an incomplete DGE PGI. We assume that
all causal variants have equal allele frequency, f , and equal DGE, δ. For some 0 < k ≤ 1, the
incomplete direct DGE PGI for individual j from family i is:

PGIδkij = δ
kL∑
l=1

(gijl − 2f), (42)

and the equivalent incomplete parental DGE PGIs are:

PGIδkp(i) = δ
kL∑
l=1

(gp(i)l − 2f); PGIδkm(i) = δ
kL∑
l=1

(gm(i)l − 2f); PGIδkpar(i) = PGIδkp(i) + PGIδkm(i). (43)

7.1 Equilibrium variance of incomplete direct genetic effect PGI

As above, we consider assortative mating to have reached an equilibrium with

Corr
(
∆p(i),∆m(i)

)
= rδ

In this simplified model, the correlations between distinct alleles (Figure S1) are all equal, with

mll = mll′ =
rδ

2L (1− rδ) + rδ

as first given by Sewall Wright in 1921[6]. (We also have that Lδ = L in this simplified model.)
First, we consider the equilibrium variance of PGIδkij :

Var
(
PGIδkij

)
= δ2kL2f(1− f)[1 + (2kL− 1)m]

= kvg[1 + (2kL− 1)m]

= kvg
1− (1− k)rδ

1− rδ + rδ/(2L)

→ kvg
1− (1− k)rδ

1− rδ
as L → ∞.

The variance of the incomplete DGE PGI is inflated from kvg (under random-mating) to

Var
(
PGIδkij

)
→ kvg

1

1− rk
;

where
rk = Corr

(
PGIδkp(i),PGIδkm(i)

)
.
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7.2 Relationship between correlations of incomplete and true DGE
PGIs

By equating the two different expressions for the equilibrium variance of the incomplete PGI
(above),

Var
(
PGIδkij

)
= kvg

1

1− rk
= kvg

1− (1− k)rδ
1− rδ

, (44)

we obtain the relationship between the equilibrium correlation between parents’ DGE compo-
nents, rδ, and the equilibrium correlation between parents’ incomplete DGE PGIs, rk:

rk =
krδ

1− (1− k)rδ
; rδ =

rk
k + (1− k)rk

.

7.3 Direct to population effect ratio without indirect genetic effects

We assume a model without IGEs, i.e. ηp(i) = ηm(i) = 0, but with assortative mating at
equilibrium. We first derive the ‘population effect’ of the incomplete DGE PGI, which is the
equilibrium regression coefficient of Yij on PGIδkij .

The covariance between phenotype and incomplete DGE PGI is:

Cov
(
PGIδkij , Yi

)
= Var

(
PGIδkij

)
+ δ2L2k(1− k)4mf(1− f).

Therefore, the population effect is:

βPGI:k =
Cov

(
PGIδkij , Yi

)
Var

(
PGIδkij

) = 1 +
2(1− k)Lm

1 + (2kL− 1)m
;

=
1 + (2L− 1)m

1 + (2kL− 1)m
;

where we have substituted in Var
(
PGIδkij

)
= δ2kL2f(1− f)[1 + (2kL− 1)m] from above. We

now express 1 + (2kL− 1)m in terms of rδ and L :

1 + (2kL− 1)m =
2L− (1− k)2Lrδ
2L (1− rδ) + rδ

.

By setting k = 1, we obtain:

1 + (2L− 1)m =
2L

2L (1− rδ) + rδ

16



and therefore

βPGI:k =
Cov

(
PGIδkij , Yi

)
Var

(
PGIδkij

) =
2L

2L− (1− k)2Lrδ
;

=
1

1− (1− k)rδ
= 1 +

(
1

k
− 1

)
rk.

Since the direct effect of the incomplete DGE PGI is 1, we therefore have that

δPGI:k

βPGI:k

= 1− (1− k)rδ. (45)

7.3.1 Variance explained by incomplete DGE PGI

The variance explained by regression of phenotype onto incomplete DGE PGI is therefore:

β2
PGI:k Var

(
PGIδkij

)
=

[
1 +

(
1

k
− 1

)
rk (2 + rk)

]
kvg

1− rk
.

We can compare this to the equilibrium genetic variance, veqg = vg/ (1− rδ), to obtain the
fraction of heritability explained by regression of phenotype onto incomplete PGI at equilibrium:

β2
PGI:k Var

(
PGIδkij

)
veqg

=

[
1 +

(
1

k
− 1

)
rk (2 + rk)

]
k

1 + (1/k − 1)rk
; (46)

=

[
1 +

(1/k − 1)rk (1 + rk)

1 + (1/k − 1)rk

]
k; (47)

= [1 + (1− k)rδ (1 + rk)] k. (48)

To obtain the fraction of phenotypic variance explained, we multiply by h2
eq:

β2
PGI:k Var

(
PGIδkij

)
veqy

= [1 + (1− k)rδ (1 + rk)] kh
2
eq. (49)

7.4 Direct to population effect ratio with indirect effects

Consider the regression of phenotype onto offspring and parental true DGE PGIs outlined in
the main text and in Section 6:

Yij = ∆ij + αδ∆par(i) + ϵij, (50)

where

αδ =
ceqg,e

2 (1 + rδ) v
eq
g

(51)
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We now compute the population effect of the incomplete DGE PGI in terms of the param-
eters of the regression on the true DGE PGI (Equation 50):

βPGI:k =
Cov

(
PGIδkij , Yi

)
Var

(
PGIδkij

) =
1

1− (1− k)rδ
+ αδ

Cov
(
PGIδkij ,∆par(i)

)
Var

(
PGIδkij

)
where the first term is the population effect of the incomplete DGE PGI when there are no
IGEs (above).

We now compute Cov
(
PGIδkij ,∆par(i)

)
. Since PGIδkij ⊥∆par(i)|Gpar(i) and E

[
PGIδkij | Gpar(i)

]
=(

PGIδkp(i) + PGIδkm(i)

)
/2, we have

Cov
(
PGIδkij ,∆par(i)

)
= Cov

(
E
[
PGIδkij | Gpar(i)

]
,∆par(i)

)
=

1

2
Cov

(
PGIδkp(i) + PGIδkm(i),∆p(i) +∆m(i)

)
;

= Cov
(
PGIδkp(i),∆p(i)

)
+ Cov

(
PGIδkp(i),∆m(i)

)
.

As we are at equilibrium, Cov
(
PGIδkp(i),∆p(i)

)
/Var

(
PGIδkij

)
= [1− (1− k)rδ]

−1, as derived

above for the offspring PGI. Therefore,

Cov
(
PGIδkij ,∆par(i)

)
Var

(
PGIδkij

) =
1

1− (1− k)rδ
+

Cov
(
PGIδkp(i),∆m(i)

)
Var

(
PGIδkij

)
Now we compute

Cov
(
PGIδkp(i),∆m(i)

)
= Cov

(
kL∑
l=1

δgp(i)l,

L∑
l=1

δgm(i)l

)
= δ2kL24mf(1− f).

Letting k = 1, we also have that

Cov
(
∆p(i),∆m(i)

)
= δ2L24mf(1− f) = rδv

eq
g

and therefore
Cov

(
PGIδkp(i),∆m(i)

)
= krδv

eq
g

Therefore,

Cov
(
PGIδkp(i),∆m(i)

)
Var

(
PGIδkij

) =
krδv

eq
g

kveqg (1− (1− k)rδ)
=

rδ
1− (1− k)rδ

, (52)
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where we have substituted in Var
(
PGIδkij

)
= kveqg (1− (1− k)rδ) from Equation 44. This gives

Cov
(
PGIδkij ,∆par(i)

)
Var

(
PGIδkij

) =
1 + rδ

1− (1− k)rδ

Therefore,

βPGI:k =
1 + (1 + rδ)αδ

1− (1− k)rδ
.

Since the direct effect of the incomplete DGE PGI is 1, we obtain

δPGI:k

βPGI:k

=
1− (1− k)rδ
1 + (1 + rδ)αδ

. (53)

7.5 Average NTC of incomplete DGE PGI

We now compute the average NTC of the incomplete DGE PGI, αPGI:k. At equilibrium,

βPGI:k = δPGI:k + (1 + rk)αPGI:k = 1 + (1 + rk)αPGI:k. (54)

Therefore,

αPGI:k = (βPGI:k − 1)/(1 + rk) (55)

=
(1 + rδ)αδ + (1− k)rδ

1 + rk
. (56)

Since δPGI:k = 1 and ρk = 1− (1− k)rδ, we also have

αPGI:k

δPGI:k

=
(1 + rδ)αδ + (1− ρk)

1 + rk
. (57)

8 Estimating k

For the inference procedure, one first needs to estimate k, the fraction of heritability the PGI
would explain in a random-mating population. Consider that one has performed the following
regression:

Yij√
veqy

= δPGI:kPGIδkij + αPGI:kPGIδkpar(i) + ϵij, (58)

where the proband and parental PGIs have been scaled by the inverse of the standard deviation
of the proband PGI, so that the proband PGI has variance 1. (This differs from the theoretical
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derivations above that use the un-normalized incomplete DGE PGI.) The expected direct effect
at equilibrium is (Equation 44):

δPGI:k =

√
kvg

veqy (1− rk)
.

Therefore, the fraction of variance explained by the PGI in a random-mating population is

k = (1− rk) δ
2
PGI:k

veqy
vg

=
(1− rk)δ

2
PGI:k

h2
f

.

To estimate k, consider that we have unbiased and statistically independent estimates of
δPGI:k, rk, and h2

f given by δ̂PGI:k, r̂k, and ĥ2
f . A simple estimator of k is

k̂0 = (1− r̂k)
δ̂2PGI:k − Var

(
δ̂PGI:k

)
ĥ2
f

,

where we subtract Var
(
δ̂PGI:k

)
to remove bias from sampling variation in δ̂PGI:k. However, this

estimator can still be substantially biased by noise in the estimate of h2
f . The expectation of

k̂0 is
E[k̂0] = (1− rk)δ

2
PGI:kE[(ĥ2

f )
−1], (59)

which we approximate with a second-order Taylor expansion:

E[k̂0] ≈

(
1 +

Var(ĥ2
f )

(h2
f )

2

)
k. (60)

This yields a bias-corrected estimator of k:

k̂1 =

(
1−

Var(ĥ2
f )

(h2
f )

2 +Var(ĥ2
f )

)
k̂0. (61)

However, in real-world applications, we do not know the true value of h2
f , so the denominator

in the bias correction factor is unknown. Since E[(ĥ2
f )

2] = (h2
f )

2 + Var(ĥ2
f ), we propose the

following bias-corrected estimator:

k̂ =

(
1−

Var(ĥ2
f )

(ĥ2
f )

2

)
k̂0 =

(1− r̂k)(1− ẑ−2
f )(δ̂2PGI:k − Var(δ̂PGI:k))

ĥ2
f

, (62)

where

ẑf =
ĥ2
f√

Var(ĥ2
f )
. (63)
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9 Sampling variances of parameter estimates

Here we consider how to derive the sampling variances of the parameters estimated from the
incomplete PGI (Figure 3). The estimating equations are non-linear functions of (δPGI:k, αPGI:k),
the direct effect and average NTC of the normalized incomplete DGE PGI on the normalized
phenotype; rk the equilibrium correlation between maternal and paternal incomplete DGE
PGIs; and h2

f = vg/v
y
eq. We assume that the sampling variance-covariance matrix of (δPGI:k,

αPGI:k) is known, and that the estimates of (δPGI:k, αPGI:k), rk, and h2
f are uncorrelated. This is

obviously true when they are from independent data. However, even when they are derived from
the same data, their correlations are unlikely to be high. This is because the estimate of δPGI:k

derives from within-family variation, which is uncorrelated with the paternal and maternal
PGIs from which the correlation rk is estimated. The estimate of h2

f could be correlated with
δPGI:k when derived from the same data, but its correlation is probably not very high in most
real-world scenarios.

Given the simplifying assumption of independence between the sample estimates, we can
then obtain an approximation to the variance of some non-linear function g

(
h2
f , rk, δPGI:k, αPGI:k

)
by the Delta method:

Var
(
g
(
ĥ2
f , r̂k, δ̂PGI:k, α̂PGI:k

))
≈

(
∂g

∂ĥ2
f

)2

Var
(
ĥ2
f

)
+

(
∂g

∂r̂k

)2

Var (r̂k)+ (64)(
∂g

∂δ̂PGI:k

)2

Var
(
δ̂PGI:k

)
+

(
∂g

∂α̂PGI:k

)2

Var (α̂k) + 2

(
∂g

∂α̂PGI:k

)(
∂g

∂δ̂PGI:k

)
Cov(α̂PGI:k, δ̂PGI:k).

(65)

The method implemented in snipar approximates the gradients numerically for each estimating
function g in order to calculate the approximate sampling variance for each parameter we
estimate.

10 Simulation study of bias and sampling variance ap-

proximation

In order to investigate bias in our parameter estimation procedure and the accuracy of estimated
standard errors, we simulated parameter inference in a scenario that mimics using the results
of two-generation PGI analysis on N independent trios and an unbiased estimate of h2

f .
We set parameters to a scenario where we have AM at equilibrium and no indirect genetic

effects, and where AM is due to matching on the phenotype in question. We set the equilibrium
heritability to be h2

eq = 0.8 and the phenotypic correlation between parents to ry = 0.75,
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implying that rδ = 0.8× 0.75 = 0.6 and h2
f = (1− rδ)h

2
eq = 0.32. Given k, this implies that

ρk = 1− (1− k)rδ; rk =
krδ
ρk

; δPGI:k =

√
kh2

f

1− rk
; β =

δPGI:k

ρk
; αPGI:k =

β − δPGI:k

1 + rk
. (66)

If we have estimated δPGI:k and αPGI:k from a two-generation PGI analysis (with phenotype and
PGIs standardized to have variance 1) using N independent trios, then (see Equation 36)[

δ̂PGI:k

α̂PGI:k

]
∼ N

([
δPGI:k

αPGI:k

]
,

1−R2
trio

N(1− rk)2

[
2(1 + rk) −(1 + rk)
−(1 + rk) 1

])
; (67)

where R2
trio is the variance explained by regression onto proband and parental PGI, which is

equal to
R2

trio = δ2PGI:k + 2(1 + rk)αPGI:k(αPGI:k + δPGI:k). (68)

We obtain our simulation estimates of δPGI:k and αPGI:k by simulating from the bivariate normal
distribution given in (67). We obtain our estimate of βPGI:k as β̂PGI:k = δ̂PGI:k + (1 + rk)α̂PGI:k.

We consider that we have estimated rk by computing the sample correlation coefficient
between the parents’ PGIs across the N independent trios, implying that the approximate
sampling distribution of r̂k is

r̂k ∼ N
(
rk,

(1− r2k)
2

N

)
. (69)

We simulated r̂k independently from δ̂PGI:k and α̂PGI:k as we found in our other simulations of
trio genotype data that estimates of r̂k were uncorrelated with δ̂PGI:k and α̂PGI:k when estimated
from the correlation between parents’ PGIs.

We simulated estimates of h2
f from a normal distribution:

ĥ2
f ∼ N (h2

f ,Var(ĥ
2
f )), (70)

and we varied the sampling variance between simulations. We did not analyze simulation
replicates where ĥ2

f < 0.

We considered N = 104 and N = 5× 105, k = 0.05, 0.2, 0.5, and
√

Var(ĥ2
f )) = 0.01, 0.1. We

considered all combinations of these parameters, giving 12 simulations in total. For each set of
simulation parameters, we simulated 1000 replicates. For each set of parameters, we assessed
the bias by comparing the sample mean of the estimated parameters across the replicates, and
we assessed the estimated standard errors by comparing the median standard error estimate
across the replicates to the standard deviation of the parameter estimates across the replicates.
We give the results in Supplementary Table 7.
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