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Supplementary Figure 1. Equilibrium phenotypic variance components: theory vs. observations. We simulated 16 phenotypes
with differing indirect genetic effect (IGE) parameters and strengths of assortative mating (Methods). a) We compare the
predicted inflation of genetic variance due to assortative mating at equilibrium, 1/(1 — 1), to the observed inflation, i.e. the
genetic variance after 20 generations of mating compared to the genetic variance in the first generation produced by random
mating. b) Comparisons of predicted inflation of variance due to parental IGEs, (1 + 1,,)/(1 — 13,), to the observed inflation after
20 generations of mating. c) We compare the predicted phenotypic variance component due to covariance between direct
2Ve~gVg
(1-rpa-rs)
with non-zero correlation DGEs and IGEs, we compare the predicted inflation of the variance component due to covariance

genetic effect (DGE) and IGE components, (rgn + rgn) to the observed variance component. d) For phenotypes

r§,+75,
between DGE and IGE components, %, to the observed inflation of this variance component after 20 generations of mating.
sn~ 1o
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Supplementary Figure 2. Simulation results for a direct genetic effect (DGE) PGl with noise level 10. Across 16 simulated
phenotypes (Methods), we computed PGls using weights equal to the true direct genetic effects plus a noise term equal to 10x
the variance to the true DGEs. This resulted in a DGE PGl that explained approximately 9% of the heritability in a random-mating
population (Supplementary Table 4). We performed two-generation PGl analysis (Methods and Figure 3) in order to estimate a)

15, the correlation between parents’ true DGE components (that explain all the heritability); b) h

2

s the equilibrium heritability; c)

as, the indirect genetic effect of the true DGE PGI; and d) the proportion of phenotypic variance contributed by the IGE
component that is correlated with the DGE component, v,.5. Vertical and horizontal error bars indicate 95% confidence intervals.



Supplementary Note for: Estimation of indirect genetic
effects and heritability under assortative mating
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1 Phenotype model

We consider a model with direct genetic effects (DGEs) and indirect genetic effects (IGEs) from
parents:
Yij = Aij + 1pi) + i) + €5

where Y;; is the phenotype of individual ¢ in family j;e¢;; is the residual that is uncorrelated
with Ay, 1), Thn() and has variance o2;

L L L

Nij =81 (gij = 2) im0y = > (gptiyt — 21) 7y = D 0 (it — 21) ;

1=1 1=1 =1
where g;;; is the genotype of individual j in family 7 at locus [; g,y is the genotype of the father
in family 4 at locus [; g,y is the genotype of the mother in family ¢ at locus [; and f; is the
allele frequency at locus [ such that E [g;;;] = 2f; (assumed to be constant across generations);
the DGE of locus [ is given by d;; and the paternal and maternal IGEs at locus [ are given by
7;. We assume that paternal and maternal IGEs are equal, but we relate the results for this
model to a model that allows for different paternal and maternal IGEs later.

In a random-mating population, the phenotypic variance can be decomposed as in the RDR

method for estimating heritability [14] :

Var (Y;;) = Var (A;;) + Var (77p(i) + nm(i)) + 2 Cov (Aij, Mp(i) + nm(i)) + 062;
where
L
vy = Var (Ay;) =2 67 fi (1= f)

=1

L
Veng = Var (1) + Mmgiy) = 4 1t fi (1= f1);

=1

L
Cge = 2Cov (A, p(a) + Nmiiy) = 4> morfi (1= 1)

=1



so that

Var (Yi;) = vy + Veng + Cge + 072

Note that for this we have made the further assumption that the L causal loci segregate
independently so are uncorrelated in a random-mating population.

2 Assortative Mating Model

We consider assortative mating that has reached an equilibrium. From Chapter 4 of Crow and
Kimura[I], the correlations between alleles at equilibrium are given in Figure .

father’s alleles mother’s alleles

OO < s O

paternal
meiosis

Fig. S1: Correlations between alleles in parents and offspring. Here, double-headed arrows
indicate correlations between alleles. Assortative mating induces correlations between alleles
in the mother and alleles in the father. At equilibrium, the correlations between alleles are as
shown for two loci { and I'[1]

We aim to express the equilibrium phenotypic variance in terms of the random-mating
variance components (Equation (1)) and the equilibrium correlations between the parents’ direct
and indirect components (Figure 1).

3 Equilibrium variance decomposition

We generalise the approach taken in Section 4.8 of Crow and Kimura[l] to apply to a trait
determined by both DGEs and IGEs from parents.



3.1 Equilibrium variance due to direct genetic effects

We have that:

L
Var(Ag;) = 2 Z5z2fz(1 — )1 +my] + 42 6160/ fi1 — f1) fur (1 — fur)ymp. (1)
I=1 [y

We relate this to Cov(A,u), Apiy) = rsVar(A;;), where rs = Corr(A,,), Apy) (Figure 1). We
have that

Cov(Amay, Api)) = 425155/ VAL = f)fr(L— fo)ma. (2)

LU

We define the effective number of independently segregating loci of equal contribution to the
variance due to DGEs, Ls:

I S 00/ FiE— ) fu (L — fo)mu
’ SR = f)82my ‘

Note that if all loci had equal DGEs and equal allele frequencies, then at equilibrium my; =
my = r V [,l', and therefore Ly = L. See Crow and Kimura section 4.7 for further details
on the model with L independently segregating loci with equal frequency and equal effects[I].
If many common genome-wide variants contribute to the variance explained by direct genetic
effects, Ls will be large. This allows us to express Var(4,;;) as

(3)

Var(A;;
Var(A;;) = vy + r5Var(A;;) — r(;M. (4)
2Ls
Let the equilibrium variance Var(A;;) be vg4, then
vl Y Y for large Ls. (5)

S P B

3.2 Equilibrium variance due to parental indirect genetic effects

As above in Subsection [3.1] it can be shown that at equilibrium

Ven
Var(np(i)> = Va‘r(/rlm(l)) = 2[1 _ (1 _gL>r ]7 (6)
2L, /'

where 7, = Corr(np(), m()) and

_ Zl,l’ T \/fl(l — f) fu (L = fu)mu
! ZIL=1 fl(l - fz)nfmu

L




is the effective number of independently segregating loci of equal contribution to the variance
due to parental IGEs.
Let v¢9  be the equilibrium variance due to parental IGEs. We have that

e~g
v
0y = 4 900V {1), ). ®)
T p(i)> Thm (i)

We further have that v

Cov(1pgiys Mmi)) = Ty 201 — (1 _gL)r B ¥
2L, /"M
Therefore,
1+7r
vl = n Vome (10)
91— (1— ﬁ)rn g

3.3 Equilibrium variance due to covariance between direct and in-
direct genetic effects

We compute the phenotypic variance due covariance between direct and indirect genetic effects:

el = 2Cov(Aij, o) + Mms)); (11)

976

= 4Cov(Ajj, Mp(iy)- (12)

To compute Cov(A;, m,z:)), we use the fact that Ay Ln,4)|Gpariy, and E[A;|Gpare)] = (Ape) +
Apiy)/2. Therefore,

1
Cov(Aijy (i) = 5 (Cov(Bpiiy, motiy) + Cov(Bpy, thmeiy)) 5 (13)
_ s, + rgn\/ VgUenyg . (14)
2 2(1 — (1 —1/(2Ls))rs)[1 — (1 = 1/(2Ly))ry]

Therefore,

@ _ (e - 2UgUe~g
Coe = (55 T 577>\/[1 — (1 —=1/(2Ls))rs][1 — (1 = 1/(2Ly,))ry]

Letting Ls — oo and L, — oo, we obtain

20,V
eq _ c T gre~g ) 16
(7“5"”5")\/ (T=rs)(1—r,) o



3.3.1 Relationship to random-mating variance component

We now relate the ¢f?, to ¢, . assuming that ¢, . # 0.

Cov(Aij, ) = Y S f(1 = )L+ 3mu) +4> " s/ (L= ) fr(1 = foymur. (17)
=1

1Al
This can be related to

Cov(Amy, o) =4 Y o/ FiL = fi) fur(1 = fur)rmuw. (18)

L

We define

_ Zz,l' o \/Jcl(1 — f) fu(L = fu)muw
ZIL:I i1 = fo)ommy

the effective number of independent loci of equal contribution to the variance due to covariance
between DGEs and IGEs. Note that if all loci had equal frequency and equal DGE and IGE,
then L, = L. Assuming that c,. # 0, we have that

Ly,

(19)

Cge
COV(AZ']‘, ’I’]p(l)) = X -+ 1-— COV(Am(i), T]p(z)) (20)
4 4L,
From above, we have that
TS, + T
COV(Aijanp(i)) = %\/VaI'(Aij)var(np(i)); (21)
and
Cov(Ammy, Mptiy) = T \/Var(Aij)Var(np(i)). (22)
Therefore,
27’6777
Cov(Anmiys Mpiy) = 7 Cov(Ai, peiy) (23)
(T
and therefore
c 1 2r;,
Cov(Aij, (i) = == + (1 - ) ——Cov(Aij, mp(i))- (24)
2P 4 4Ls, 5y 75y 2P
After some rearrangement, it can be shown that
rgn + rgn c

Cov(Asyj, o)) = 2 (25)

r¢ —(1— 1 rT 4 ’
on 2Lsy, on
c T
eq __ 7’577 + 7”577
Coe = Cge-
rée —(1—s2)r?
on 2Ls, ) " 07

5

and therefore




3.3.2 Expression in terms of direct and indirect genetic effect correlation

We now derive the relationship between r§, and 7§, to give an alternative expression for ¢gl.

g,e’
Recall that (Figure 1) 7§, is the correlation between direct and indirect effect components within
an individual:
e __ Cov Ay, mp)
TSy =

\/ Var (D)) Var (m)

We now define the correlation between DGE and IGE components in an individual under
random mating to be ’I“gn, which can be expressed in terms of the random-mating variance

components:
0 _ Cg,e

Top = —F———.
n
\/ 2UgVeng

If we further assume equal allele frequencies, i.e. f; = f VI, then this is simply the genome-wide
correlation of the direct and indirect genetic effects:

0 _ Sr o

") (S )

Without assuming equal allele frequencies, it is the genome-wide correlation of the direct and
indirect genetic effects for genotypes standardized to have variance 1 .
Now we compute rg, at equilibrium. First, we compute

Cov (Ap(i); Tp(i) Z&nﬂf: (L= f) L+ mu] + 4> dme/fi (U= fi) for (U= fuymu.

1A

Following a similar procedure to above, we obtain:

c 1
Cov (Bp(i, Moiiy) = =5 (1 ~3 L517) Cov (D), Moo
Now we obtain the correlation at equilibrium:

Cope +(1_ 1 > Cov (D), M)
2\/Var o) Var (1)) 2hon/ - [Var (8y0) Var ()

We can then express this in terms of Ty = Corr (Am(i), np(i)), rs, Ty, and the random-mating
variance components. Letting Ls, — oo,

B Cge/2

n =

T + rgn

VgVeng
2(1=rs)(1=ry)

6



This can then be further simplified by expression in terms of Tgn :

r, = rgn\/(l —75) (1 =1ry) + 75,

We can then substitute this into the expression for ¢gl, derived above:

2 T
cl=(1+ 20 e e
v ( VG—HNP”M@JQ

3.4 Different maternal and paternal indirect genetic effects

If we allow the maternal and paternal indirect effects to be different, i.e.

anl gp l_2fl nmz anl gm l_2fl)

=1 =1

then we can write the phenotype model as (see[2])

Yij = Aij 4 Moty + M) + Moty — Am() + €45

which is the same as in 1, except

M= (Mpt + Mmt) /23 Api Z NiGp(iyi; A Z Atgmiys Av = (Tlpt = Nimt) /2.

Ignoring the term involving the differences between paternal and maternal indirect effects,
this model is equivalent to the model considered above with 7, replaced by (9, + 1) /2, i.e.
the average of paternal and maternal indirect effects.

Now we consider the statistical relationship between the difference term and the other non-
residual terms. We first consider the covariance between the DGE component and the difference
term. As the offspring genotype is equally related to maternal and paternal genotypes, i.e. by
symmetry,

Cov (AU7 )\p(l — Am(i)) = 0.

We now consider the covariance between the sum and difference terms for parental IGEs.
Since Var (gp(z ) Var (gm )1)

Cov (gp(i)l + Gm(i)is Ip(iy — gm(i)l) = 0.

For distinct loci, we have that

Cov (Gp(iyt + Gyt oGy — G ) = 2 (dmyy — 4myy) = 0.



Therefore,

Cov (1p(i) + Mm(iy» Api) — Amiiy) = 0

This shows that the difference component is uncorrelated with the DGE and average parental
IGE components. Therefore, for many applications, the difference term can be subsumed into
the residual and the variance decomposition for the model with equal paternal and maternal
indirect effects used — along with the interpretation that the parental IGE is the average
parental IGE.

However, for some applications, such as calculating covariances between relatives, the dif-
ference term remains important. We therefore give a variance decomposition at equilibrium
including the difference term. First, we give the random-mating variance of A\p;) — A :

L
U\ = Var (/\p(i) - )\m(i)) = Z )\124fl (1 - fl) .
=1

Now we consider that at equilibrium, Corr ()\p(,-), /\m(i)) = 7). Let UZ? be the equilibrium
variance of \,;), then the at equilibrium we have
Var ()\p(i) — )\m(i)) =2 (1 — 7’)\) Ule;l.

Following a similar procedure to above for the other variance components, it can be shown
that

v = A
21— (1—=2/Ly)ry)’

where

_ X NNV (= i) fir (1= fu)dma
Zlel )\l2fl (1 - fl) my

A

Therefore, at equilibrium

o 1—’/")\
11— (1—=2/Ly)ry

Var (Ap) = Am(i))

Ux-
In limit as L) — oo,

Var (A = Am(i)) = va-

This shows that assortative mating makes approximately no difference in the variance due to
differences between paternal and maternal IGEs when there are many variants genome-wide
contributing to differences between maternal and paternal IGE components. We can thereby



generalize the equilibrium variance decomposition to include the variance component due to
differences between maternal and paternal IGEs:

v 1+7r 20,Ven,
Vi Y; _ 9 n o c T g-e~g 2'
ar (Y;;) 1—r5+1—rnv g+(r‘57’+r§”)\/(1—m)(1—rn)+w+05

3.5 Primary phenotypic assortment

Previously, we did not consider the mechanism of assortment: just that we had reached an
equilibrium where the correlations between alleles are constant across generations. Here we
consider what the equilibrium correlation between parents’ direct effect components would
be under a model of assortative mating due to matching on the phenotype, called primary
phenotypic assortment. The key assumption is that the paternal DGE and IGE components
are conditionally independent of the maternal DGE and IGE components given the maternal
and paternal phenotypes:

Apiys Moty L Dngiys My | Yiys Yot

Under this assumption and a further assumption that E [Ap(i) | Y;,(i)] is a linear function of Y,
(see Nagylaki 1982[3] for a discussion of the conditions under which this assumption holds), we

have that
_ Cov (A Ame)

Ts qu )
_ Cov (E [Api) | Y] L E [Amgy | Yiw])
Vg ’
_ Cov (Ap(o%(i))i
- eq_eq Y,
Uy Vg

where vy? is the equilibrium phenotypic variance. It is trivial to derive that Cov (Ap(i), Y;,(,-)) =
vgd + c;% /2, and therefore, after some rearrangement,

g7
4 c
rs=hiry [T+ -2 (14221,
’ ¥ { Vg < 4vg?
We therefore see that parental IGEs, when correlated with DGEs, can inflate the equilibrium
correlation between DGE components of parents over what would be expected from DGEs alone.

The same logic implies that the other correlations in Figure 1, and therefore the equilibrium
phenotypic variance will be further inflated by AM when DGEs and IGEs are correlated.

4 Estimating heritability using realized relatedness

Here, we examine heritability estimation using realized relatedness between siblings (‘sib-
regression’), as first proposed in 2006 by Visscher et al.[4]. Let R;;; be the realized relatedness

9



between sibling j and sibling & in family . While the expected relatedness between siblings
is given by the pedigree, the realized relatedness varies around the expectation due to ran-
dom segregations during meiosis in the parents, leading to variation in the fractions of the
genome the siblings share identical-by-descent (IBD). We first derive the phenotypic covariance
between siblings in terms of their realized relatedness, then we derive the bias due to AM in
sib-regression estimates of heritability.

4.1 Equilibrium covariance between siblings

We show how to express the equilibrium phenotypic covariance between siblings in terms of
their realized relatedness and the equilibrium decomposition of the phenotypic variance. The
covariance between the DGE components of a sibling pair is:

L

Cov (Ai1, Ajp) = Z 67 Cov (giu, giat) + 4Z5l51/\/fl (1—f) fr (L= fu)mu
=1 1Al

The covariance between siblings’ genotypes conditional on the IBD state at the locus is:

dmy fi (1 — fi1),IBDy

Cov (giu, gizt) = 8 (1 +3my) fi (1 — f;),IBDy
2(L+my) fi (1 - fi),IBD,

Let Py, Pi, P, be the proportion of the genome shared in IBD states 0, 1, and 2, respectively.
Therefore, assuming causal variants are located at random with respect to IBD sharing,

Cov (giu, gizt) = fi (1 = fi) [Pr + 2P +my (4P + 3P, + 2P,)].
The realised relatedness between the siblings is R = (P1 + 2F,) /2. Therefore,
Cov (g, gior) = 2fi (1 = fi) [Riji +mu (2P + (3/2) P, + P)] .
Since Py + Py + P, = 1,2Py + (3/2) P, + P> = 2 — R;j;. Therefore,
Cov (ginr, gir) = 21 (1 = fi) [Rijie + (2 — Rije)mu] -

This gives the covariance between siblings’ DGE components as

~

Cov (Ai1, Aig) = vgRiji +2(2— Rijy.) Zélzfl (L= fi) mu +4Z5l(5z’\/fl (L= fo) fr Q= fu)mu.
=1 LA

We now relate this to Cov (Am(i), Ap(i)) = 15Uyt

L L
Cov (Aj1, Aig) = vy Rijr +2(2 = Rige) D67 fi (1= fi) mu +rsv5® = > 6 fi (1= fi) mu.
=1

=1

10



Now expressing in terms of Ly :

Cov (Aih A22) = UgRijk + (1 + %) TgUEq.
6

Now letting Ly — oo,
Cov (Aih AZQ) — UgRijk -+ Tg?};q.

We therefore see that the realized relatedness does not track the assortative mating induced
inflation of the variance due to direct effects. Setting R;;, = 0.5, the expected relatedness given

the pedigree, we obtain
1 + Ts eq

v
2 97
the same as based on pedigree alone. This gives the phenotypic covariance between siblings as

COV (Aila Azg) =

Cov (Yi1,Yia) = vy Riji + v, 4 Vel

e~g + CZ(}e + COV (Gﬂ, 61'2) .
Allowing for finite Ls, we obtain

Ts e e e
Cov (}/z’ja Kk) = (1 - 2L5 — (2L5 — 1) T’5> UgRijk -+ ?“5’qu + Uegg + Cg?e + Cov (Eija Eik)

4.2 Estimating heritability by sib-regression

Heritability is estimated by the slope of the regression of (Y — ) (Yix — 1) /v;? onto Rijp
across sibling pairs[4} [5], where p,, is the phenotypic mean and vg? is the equilibrium phenotypic
variance. Since

E[(Yij — py) (Yi — py) Joy® | Riji] = (ravi? + vgdy + gl + Eleijear]) /vyi+

Ts Vg
1— —Z Rijn.
< 2L5 — (2L5 — 1) 7“5> Uzq gk

Assuming that €;;¢; is uncorrelated with R;;;, across sibling pairs (which is violated when there
are indirect genetic effects between siblings[d]), this implies that performing the regression
across siblings gives as slope

s 2 2 Ug
1-— h — hs = —= Ls —
( 2L5 — <2L5 — 1) 7”5) f f U;q as Lo >

i.e. the random mating variance of the DGE component divided by the equilibrium phenotypic
variance. This is smaller than the equilibrium heritability, hZ,, by a factor of v, /v$% = (1 — 75).
Although unlikely to be relevant for complex traits in humans, the above result implies that

there would be a further downward bias when there is AM for a phenotype affected by only a

11



small (effective) number of loci. For example, if Ls = 1, as for a phenotype affected by a single
variant, then the heritability estimate would be

rs 2
1-— h
( 2—7“5) ’

which approaches zero as rs approaches 1.
The intercept is

mhgq + (vggg + g+ E[eijeik]) /vzq, (27)

where the r(;hgq term captures the increased correlation between siblings” DGE components due
to AM, and the remaining terms capture variance explained by environmental factors shared
between siblings.

This result (in the limit as Ly — oo) agrees with the hypothesis put forward in Kemper et
al.[10], which argued that sib-regression estimates the random mating genetic variance divided
by the phenotypic variance in the present generation, which is hfc at equilibrium. Kemper et
al. supported their argument through a theoretical derivation and simulations of one gener-
ation of assortative mating. We show here that their theoretical argument was incorrect. In
Supplementary Note Section 3.2 of Kemper et al. (pages 60-61 of the supplement) they use the
following result to argue that sib-regression estimates h?:

E[6:10i2| Rijk] = vgRijks (28)

which is stated without proof. However, as we prove above (Equation {4.1J),

3—2R;; . .
E[(SllazQ‘lek] = ’UgRijk + (1 + 4—[/5Jk> n;vgq — UgRijk + T'(s?)gq as L5 — Q. (29)
However, using the incorrect result E[0;10,2|Riji] = vyRijr in their derivation still gives the

correct slope for sib-regression because the the missing rsvgt term is uncorrelated with R
across sibling pairs. The result they give for the slope in the section is also missing a rsv,? term
since they ignore the inflation of genetic covariance between siblings due to AM when giving
the phenotypic covariance between siblings.

5 Polygenic index analysis under random-mating

Here we derive the expected regression coefficients from two-generation PGI analysis under
random-mating in terms of the weight vector of the PGI. Let

L L
1 1
PGl; = % Zwl(gijl —2f1); PGlpa() = % Zwl(gp(i) + Gm(y — 441); - (30)
=1 =1

12



where .
v="> wi2fi(l- f). (31)
=1
We consider performing the regression defined by:
Yi; = opciPGL; + apaiP Gl + €5 (32)
Let par
%= vai., |

Then we have that, under random-mating,
11

and

We also have that

Cov (X5, Y;;) 1 [ S wid2fi (L= fi) + S wm2fi (1 - f) ] .

TV LS wd2fi (= fi) S wmdfi (1 - )

Therefore,

Spat] . 1 [ S wd2fi(l- 1)
] v (0, o 4,73 = = [ Epps2h 0= ]

Under random-mating, we also have that

COV(Y;]', PGI”)

= =4 ) 33
Brar Var(PGL,) pPGI + @par (33)

6 Direct genetic effect PGI at equilibrium

Here we derive the expected regression coefficients from two-generation PGI analysis of the true
DGE PGI under assortative mating at equilibrium. This is defined by the following regression:

Yvij = 55Aij + OégApar(i) + €53 (34)
where (Equation [1] and Figure 1)
L L
Nij = 61 — 200 Dpary = D 0u(Gp(i) + Imi) — A1) = Dty + Ay (35)
=1 =1

13



Let

Then we have that

1 1—|—T5
Var (X..) = &4 .
ar (Xyy) = v [1+7~5 2(1+r5)]’

and
_ 1 2(1+T(5> —(1+T5>
), 07} R — )
Vor (%)™ = =y | 2000 T 30
We also have that
B vgd + ¢l L /2
Cov (Xig. ) = [ (1 +rs) gt + Cov (Aparu (i) + Thm(i)) }

where we have used the fact that Cov (Aw,np(l) + nm(l)) = ¢ / 2. We can again use this to
compute Cov (Apar(i),np(i) + nm(i)). Because Ay L 1y3), Mm@ | Gpar(s) and E [ ij | Gpar(i)} =

Apar(i)/zu
Cov (Aija Np(i) + nm(i)) = Cov ( par(i /2 Mp(i) + Wm(z)) ,

= Cov (Apar(i)7 (i) + 77m(i>) = Cge-
Therefore,

eq eq
Cov (X5, Y;5) = { ( e /2 } ;

I+ 7”5) eq + Ce(,le

1
Coe :
2(1+rs)vg?

6.1 Variance explained by parent and offspring DGE PGIs

and therefore

{55} Var (X;;) ™! Cov (X, V) =

We now compute the phenotypic variance explained the regression of parent and offspring DGE

PGIs (Equation [34)):

Var(Y;;) = Var(A;;) + a?Var(Apar(i)) + 20,5Cov(A5, Apar(s) )+ ‘752 (37)
= vS[1 + 205 (1 + 1r5) + 2a5(1 + 75)] + 07 (38)
= g1+ 2(1 + rs)as(1 + )] + o2 (39)

Therefore, the fraction of phenotypic variance explained by the regression is:

Var(Aij + aéApar(i))

eq
Vy

= hZ2 1+ 2(1 4 rs)as(1 + as)). (40)

The increase in variance explained compared to if there were no IGEs (i.e. as = 0) is

5 21+ 2(1 4 r5)as(1 + a5)] — h2, = 2(1 + rs)as(1 + as)h2,. (41)
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7 Incomplete direct genetic effect PGI

Here we derive results for two-generation analysis of an incomplete DGE PGI. We assume that
all causal variants have equal allele frequency, f, and equal DGE, §. For some 0 < k < 1, the
incomplete direct DGE PGI for individual j from family 7 is:

kL
PGI =6 (gi1 — 2f), (42)
=1

and the equivalent incomplete parental DGE PGlIs are:

kL kL
6 0 é Ok 0
PGI% =8> (gpan — 2F); PGI% ) =8> (gumiin — 2f); PGI% ) = PGI%, + PG . (43)
=1

=1

7.1 Equilibrium variance of incomplete direct genetic effect PGI

As above, we consider assortative mating to have reached an equilibrium with
Corr (Ap(i), Am(i)) =Ts

In this simplified model, the correlations between distinct alleles (Figure S1) are all equal, with

Trs
2L (1 — 7“5) + s

my =myy =

as first given by Sewall Wright in 1921[6]. (We also have that Ls = L in this simplified model.)
First, we consider the equilibrium variance of PGI,?]’? :

Var (PGI;?;) = 0°kL2f(1 = f)[1 + (2kL — 1)m]
= kv, [1 + (2kL — 1)m)]

1—(1—-k
= kv, ( )75
1—T5—|—T5/(2L>
1—(1—-k
%kng as L — oo.
1—7’5

The variance of the incomplete DGE PGI is inflated from kv, (under random-mating) to

1
Var (PGI?;) — kv

where

i = Corr (PGI PG, )

15



7.2 Relationship between correlations of incomplete and true DGE
PGIs

By equating the two different expressions for the equilibrium variance of the incomplete PGI

(above),

1 1-— (1 — k?)?”g
= fy,——— 73

— T Y9 1—rs

5
Var (PGLY ) = ko, : (44)
we obtain the relationship between the equilibrium correlation between parents” DGE compo-
nents, 75, and the equilibrium correlation between parents’ incomplete DGE PGls, ry:

_— krs S T
IS0 —k)rs T k+ (= k)

7.3 Direct to population effect ratio without indirect genetic effects

We assume a model without IGEs, i.e. 1,3 = 7ne = 0, but with assortative mating at
equilibrium. We first derive the ‘population effect’ of the incomplete DGE PGI, which is the
equilibrium regression coefficient of Y;; on PGIZ’?.
The covariance between phenotype and incomplete DGE PGI is:
Cov (PGI, ;) = Var (PGI} ) +0°L2k(1 — k)m (1~ ),

TR

Therefore, the population effect is:

5 Cov (PGL,Y) |20 =k)Lm
PGLk = = )
Var (PG L+ (2kL —1)m
1+ @2L-1)m
14 (2L —1)m’

where we have substituted in Var (PGI?;) = 6?kL2f(1 — f)[1 + (2kL — 1)m] from above. We
now express 1 + (2kL — 1)m in terms of r5 and L :

2L — (1 — k)2Lrs

1+ (2kL — 1)m = .
* Y s s

By setting k£ = 1, we obtain:

2L
2L (1 — 7’5> +7rs

1+ (2L —-1)m=

16



and therefore

Cov (PG, ;) o

Var (PGI?;) T 20— (1—R2Lrs’
1 1
R T R
1— (1— k) +(k >T’“

Since the direct effect of the incomplete DGE PGI is 1, we therefore have that

ﬁPGI:k -

OpGik _ g _ (1—K)rs. (45)
5PGI:I€

7.3.1 Variance explained by incomplete DGE PGI

The variance explained by regression of phenotype onto incomplete DGE PGI is therefore:

1 k
(o) < [+ ()i ] 22

We can compare this to the equilibrium genetic variance, vg? = v,/ (1 —75), to obtain the

fraction of heritability explained by regression of phenotype onto incomplete PGI at equilibrium:

5123G1:k Var (PGIff> 1 k
qu = |:1+ (E—l) Tk (2+Tk):| 1—|—(1/k}—1)’l“k’ (46)
N {H 1+ (1/k—1)ry, }k (47)
=[1+1—=Fkrs(1+ry)]k. (48)

To obtain the fraction of phenotypic variance explained, we multiply by hgq:

B Var (PGLY) 2
& = [1+ (1 = k)rs (1 +ry)] khgy- (49)

Uy

7.4 Direct to population effect ratio with indirect effects

Consider the regression of phenotype onto offspring and parental true DGE PGlIs outlined in
the main text and in Section [G}

Y;j = Ai]’ + Oé(;Apar(i) + €ij, (50)
where
c4
. — (51)

2 (1 -+ 7“5) qu

17



We now compute the population effect of the incomplete DGE PGI in terms of the param-
eters of the regression on the true DGE PGI (Equation [50)):

Cov <PGI(S’“ Y) 1 Cov (PGIU ; Apar(i))

(] )
- + as
var (Pa1y) 1= (1=E)r

ron: = Var (PG )

where the first term is the population effect of the incomplete DGE PGI when there are no
IGEs (above).

We now compute Cov <PGI6 Apar(i)>. Since PGI;;J’?J_APM(MGPM(@-) and E [PGI;SJ’? | Gpar(s) | =

ij

(PG, + PGI, ) /2, we have

Cov (PGI, Apurgy ) = cov( PGLY | Gty > A

177

— - Cov (PGI%

(i)

+PGLY Ay + Am@) ;
= Cov (PGI, Ay ) + Cov (PGIY,, Auy)

As we are at equilibrium, Cov (PGIg’Zi), Ap(i)> / Var (PGI?;) = [1—(1—k)rs]"", as derived
above for the offspring PGI. Therefore,

Cov (PGI‘S’“ Aty ) B 1 Cov (PGIg’Zi), Am(i))

R
var (PG1y) Lo (=h T (par)

Now we compute

kL L
Cov (PGIg’Zi), Am(i)> = Cov (Z dGp(i)i» Z 59m(i)l> = kL*4mf(1 — f).
1=1 =1

Letting k = 1, we also have that
Cov (Ap(i), Am(i)) = (52L24mf(1 — f) = Tgvgq

and therefore
Cov (PGIf;gi), Am(i)) -
Therefore,
Cov (PGI‘S’(C),A (~)) krgusd rs
Var (PGI?;) TR (1= (1= k)rs) 1 (1= k)rs

(52)
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where we have substituted in Var (PGI?}“) = kvgd(1 — (1 — k)rs) from Equation . This gives

6
Cov (PG M) 141,
Var (PGI;?;) 1—(1—k)rs
Therefore,
1+ (1 -+ 7"5)045
BPGI:k‘ -

1-— (1 — ]{?)7”5 .
Since the direct effect of the incomplete DGE PGI is 1, we obtain

opark 1 —(1—=FK)rs

Brare L4+ (L+7s5)as (53)
7.5 Average NTC of incomplete DGE PGI
We now compute the average NTC of the incomplete DGE PGI, apgrr. At equilibrium,
Brarr = Opcrk + (14 7%)apare = 1+ (14 7%)apcrs. (54)
Therefore,
apcrk = (Bpare — 1)/(1+1%) (55)
_ (I+7rs)as + (1 — k:)r(;‘ (56)
147
Since dpgrry = 1 and pp =1 — (1 — k)rs, we also have
apare _ (1+7s)as + (1 — Pk)' (57)

OPGLEk 1+

8 Estimating k

For the inference procedure, one first needs to estimate k, the fraction of heritability the PGI
would explain in a random-mating population. Consider that one has performed the following
regression:

Yij

Vit

where the proband and parental PGIs have been scaled by the inverse of the standard deviation
of the proband PGI, so that the proband PGI has variance 1. (This differs from the theoretical

= 5PGI:kPGI?; + OéPGI:kPGIi';r(i) + €5, (58)
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derivations above that use the un-normalized incomplete DGE PGI.) The expected direct effect
at equilibrium is (Equation [44)):

kg

OPGLk = | e
PGIL:k w1 — 1)

Therefore, the fraction of variance explained by the PGI in a random-mating population is

oq 1 — Tk (52 .
k= (1—7k)0pgrr— = ¢ hz) O,

To estimate k, consider that we have unbiased and statistically independent estimates of
Opark, Tk, and h} given by dparr, 7k, and h7. A simple estimator of k is

<

S%’GI:k — Var (8PGI:I<:>

72
hf

ko= (1—7)

Y

where we subtract Var <5PGI:]€> to remove bias from sampling variation in dpgr.,. However, this

estimator can still be substantially biased by noise in the estimate of hfc. The expectation of

];'0 is R R
E[ko] = (1 — 1) 0p i E[(hF) 7], (59)
which we approximate with a second-order Taylor expansion:
E[k 1 Var(hj) k 60
ko) =~ + (h?)Q . (60)

This yields a bias-corrected estimator of k:

Var(h2) ) . o)

b = (1 T h2)2 72
(h2)? + Var(h2)

However, in real-world applications, we do not know the true value of h2, so the denominator

in the bias correction factor is unknown. Since E[(ﬁ})Q] = (h3)* + Var(/Asz), we propose the
following bias-corrected estimator:

A A e .
- <1 . Vaﬁh})) o = (L 700 = 5) R = Varldrau)) 2)
(h$)? h%
where .
h2
Bp= ——L . (63)
Var(h?)



9 Sampling variances of parameter estimates

Here we consider how to derive the sampling variances of the parameters estimated from the
incomplete PGI (Figure 3). The estimating equations are non-linear functions of (dpcrk, apcrr),
the direct effect and average NTC of the normalized incomplete DGE PGI on the normalized
phenotype; 7 the equilibrium correlation between maternal and paternal incomplete DGE
PGIs; and h? = vy /v}{q. We assume that the sampling variance-covariance matrix of (dpgr.,
apgrk) is known, and that the estimates of (dpgrx, apcrk), Tk, and h?c are uncorrelated. This is
obviously true when they are from independent data. However, even when they are derived from
the same data, their correlations are unlikely to be high. This is because the estimate of dpgr.s
derives from within-family variation, which is uncorrelated with the paternal and maternal
PGIs from which the correlation r; is estimated. The estimate of hfc could be correlated with
dpgr.x when derived from the same data, but its correlation is probably not very high in most
real-world scenarios.

Given the simplifying assumption of independence between the sample estimates, we can
then obtain an approximation to the variance of some non-linear function g (h?c, Tk, OPGLE, OépG[;k)
by the Delta method:

2
N N N ~ 8 R 8 2 A
Var (9 <h?”7rk75PGI:kuOCPGI:k)) R <8—52> Var (h?) + <(‘9—fgk) Var (7) + (64)
f
z Var (dparr ) + | 5= Var (ay) + 2 | == < Cov(apark, Opark)-
<35PG1;k <PGI k) daparr (@) Oapark dopark e PG(I k))
65

The method implemented in snipar approximates the gradients numerically for each estimating
function ¢ in order to calculate the approximate sampling variance for each parameter we
estimate.

10 Simulation study of bias and sampling variance ap-
proximation

In order to investigate bias in our parameter estimation procedure and the accuracy of estimated
standard errors, we simulated parameter inference in a scenario that mimics using the results
of two-generation PGI analysis on /N independent trios and an unbiased estimate of h?.

We set parameters to a scenario where we have AM at equilibrium and no indirect genetic
effects, and where AM is due to matching on the phenotype in question. We set the equilibrium
heritability to be hgq = 0.8 and the phenotypic correlation between parents to r, = 0.75,
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implying that 75 = 0.8 x 0.75 = 0.6 and h% = (1 — r;5)hZ, = 0.32. Given k, this implies that

k kh3 5 s
pr=1—(1—=k)rs; r, = =2, Gpae = B = ek = B — decrx PCLE
Pk 1—m Pk L+

(66)

If we have estimated dpgrr and apgry from a two-generation PGI analysis (with phenotype and
PGIs standardized to have variance 1) using N independent trios, then (see Equation

Ppelzk} ~ N < {%Gm} — R {2(1 +re) —(1+ r’“)D ; (67)

QAPGLk apare|  N(1—1rp)? [—(147) 1

where R?

1o 1s the variance explained by regression onto proband and parental PGI, which is
equal to

RYio = 0pars + 2(1 + rp)apcrk(apcrr + Oparr)- (68)

We obtain our snnulatlon estimates of dpgr., and apgr.r by snnulatmg from the bivariate normal
distribution given in . We obtain our estimate of Spqr.r as BPGI P 5pGI k+ (14 ri)dpark.

We consider that we have estimated rp by computing the sample correlation coefficient
between the parents’ PGIs across the N independent trios, implying that the approximate

sampling distribution of 7 is
. (1 —r)?
e~ N, ——" | . (69)

We simulated 7, independently from SPGI;k and apgrx as we found in our other simulations of
trio genotype data that estimates of 7, were uncorrelated with 51:@1:;6 and &pgr, when estimated
from the correlation between parents’ PGIs.

We simulated estimates of hfc from a normal distribution:

h% ~ N (h%, Var(h3)), (70)

and we varied the sampling variance between simulations. We did not analyze simulation
replicates where 7} < 0.

We considered N = 10* and N = 5 x 10, k = 0.05, 0.2, 0.5, and @/Var(ﬁ?)) =0.01,0.1. We
considered all combinations of these parameters, giving 12 simulations in total. For each set of
simulation parameters, we simulated 1000 replicates. For each set of parameters, we assessed
the bias by comparing the sample mean of the estimated parameters across the replicates, and
we assessed the estimated standard errors by comparing the median standard error estimate
across the replicates to the standard deviation of the parameter estimates across the replicates.
We give the results in Supplementary Table 7.
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